32 research outputs found
MCViNE -- An object oriented Monte Carlo neutron ray tracing simulation package
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is a versatile Monte Carlo
(MC) neutron ray-tracing program that provides researchers with tools for
performing computer modeling and simulations that mirror real neutron
scattering experiments. By adopting modern software engineering practices such
as using composite and visitor design patterns for representing and accessing
neutron scatterers, and using recursive algorithms for multiple scattering,
MCViNE is flexible enough to handle sophisticated neutron scattering problems
including, for example, neutron detection by complex detector systems, and
single and multiple scattering events in a variety of samples and sample
environments. In addition, MCViNE can take advantage of simulation components
in linear-chain-based MC ray tracing packages widely used in instrument design
and optimization, as well as NumPy-based components that make prototypes useful
and easy to develop. These developments have enabled us to carry out detailed
simulations of neutron scattering experiments with non-trivial samples in
time-of-flight inelastic instruments at the Spallation Neutron Source. Examples
of such simulations for powder and single-crystal samples with various
scattering kernels, including kernels for phonon and magnon scattering, are
presented. With simulations that closely reproduce experimental results,
scattering mechanisms can be turned on and off to determine how they contribute
to the measured scattering intensities, improving our understanding of the
underlying physics.Comment: 34 pages, 14 figure
Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi
Abstract Wood decayed by brown rot fungi and wood treated with the chelator-mediated Fenton (CMF) reaction, either alone or together with a cellulose enzyme cocktail, was analyzed by small angle neutron scattering (SANS), sum frequency generation (SFG) spectroscopy, Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). Results showed that the CMF mechanism mimicked brown rot fungal attack for both holocellulose and lignin components of the wood. Crystalline cellulose and lignin were both depolymerized by the CMF reaction. Porosity of the softwood cell wall did not increase during CMF treatment, enzymes secreted by the fungi did not penetrate the decayed wood. The enzymes in the cellulose cocktail also did not appear to alter the effects of the CMF-treated wood relative to enhancing cell wall deconstruction. This suggests a rethinking of current brown rot decay models and supports a model where monomeric sugars and oligosaccharides diffuse from the softwood cell walls during non-enzymatic action. In this regard, the CMF mechanism should not be thought of as a “pretreatment” used to permit enzymatic penetration into softwood cell walls, but instead it enhances polysaccharide components diffusing to fungal enzymes located in wood cell lumen environments during decay. SANS and other data are consistent with a model for repolymerization and aggregation of at least some portion of the lignin within the cell wall, and this is supported by AFM and TEM data. The data suggest that new approaches for conversion of wood substrates to platform chemicals in biorefineries could be achieved using the CMF mechanism with >75% solubilization of lignocellulose, but that a more selective suite of enzymes and other downstream treatments may be required to work when using CMF deconstruction technology. Strategies to enhance polysaccharide release from lignocellulose substrates for enhanced enzymatic action and fermentation of the released fraction would also aid in the efficient recovery of the more uniform modified lignin fraction that the CMF reaction generates to enhance biorefinery profitability
Differences in access to Emergency Paediatric Intensive Care and care during Transport (DEPICT): study protocol for a mixed methods study
Introduction Following centralisation of UK paediatric intensive care, specialist retrieval teams were established who travel to general hospitals to stabilise and transport sick children to regional paediatric intensive care units (PICUs). There is national variation among these PICU retrieval teams (PICRTs) in terms of how quickly they reach the patient’s bedside and in the care provided during transport. The impact of these variations on clinical outcomes and the experience of stakeholders (patients, families and healthcare staff) is however unknown. The primary objective of this study is to address this evidence gap. Methods and analysis This mixed-methods project involves the following: (1) retrospective analysis of linked data from routine clinical audits (2014–2016) to assess the impact of service variations on 30-day mortality and other secondary clinical outcomes; (2) a prospective questionnaire study conducted at 24 PICUs and 9 associated PICRTs in England and Wales over a 12-month period in 2018 to collect experience data from parents of transported children as well as qualitative analysis of in-depth interviews with a purposive sample of patients, parents and staff to assess the impact of service variations on patient/family experience; (3) health economic evaluation analysing transport service costs (and other associated costs) against lives saved and longer term measurements of quality of life at 12 months in transported children and (4) mathematical modelling evaluating the costs and potential impact of different service configurations. A final work stream involves a series of stakeholder workshops to synthesise study findings and generate recommendations. Ethics and dissemination The study has been reviewed and approved by the Health Research Authority, ref: 2 18 569. Study results will be actively disseminated through peer-reviewed journals, conference presentations, social media, print and broadcast media, the internet and stakeholder workshops
Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease
BACKGROUND:
Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes.
METHODS:
We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization.
RESULTS:
During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events.
CONCLUSIONS:
Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)
Johnny Still Can't Write, Even if He Goes to College: A Study of Writing Proficiency in Higher Education Graduate Students
This study explored the extent to which graduate students enrolled in Higher Education courses were proficient at writing. A total sample size of 97 graduate students from programs of Higher Education served as the sample. To assess writing proficiency the SAT II: Writing Test, Part B was used. The graduate students in this sample did not score significantly higher on the SAT II: Writing Test, Part B than the typical high school senior whose scores enter into the norm group