1,434 research outputs found
Noise at a Fermi-edge singularity
We present noise measurements of self-assembled InAs quantum dots at high
magnetic fields. In comparison to I-V characteristics at zero magnetic field we
notice a strong current overshoot which is due to a Fermi-edge singularity. We
observe an enhanced suppression in the shot noise power simultaneous to the
current overshoot which is attributed to the electron-electron interaction in
the Fermi-edge singularity
Tunable graphene system with two decoupled monolayers
The use of two truly two-dimensional gapless semiconductors, monolayer and bilayer graphene, as current-carrying components in field-effect transistors (FET) gives access to new types of nanoelectronic devices. Here, we report on the development of graphene-based FETs containing two decoupled graphene monolayers manufactured from a single one folded during the exfoliation process. The transport characteristics of these newly-developed devices differ markedly from those manufactured from a single-crystal bilayer. By analyzing Shubnikov-de Haas oscillations, we demonstrate the possibility to independently control the carrier densities in both layers using top and bottom gates, despite there being only a nanometer scale separation between them
Following Guidelines for Drug-Resistant Tuberculosis: âYes, itâs a challengeâ
BACKGROUND: Drug-resistant tuberculosis (DR-TB) is a major contributor to antimicrobial resistance (AMR) globally and is projected to be responsible for up to a quarter of AMR-associated deaths in the future. Management of DR-TB is increasingly decentralised to primary healthcare settings, and simultaneously becoming more complex due to a growing range of treatment options (e.g. novel agents, shorter regimens). This is reflected in the numerous recent updates to international guidelines and as such understanding the barriers and enablers to how healthcare workers access and use guidelines is vital.
MATERIAL AND METHODS: We used an established psychological framework â the theoretical domains framework (TDF) â to construct and analyse an online survey and focus groups to explore healthcare workers current use of DR-TB guidelines in South Africa. We aimed to identify barriers and enablers with which to direct future attempts at improving guideline use.
RESULTS: There were 19 responses to the online survey and 14 participants in two focus groups. 28% used the most up-to-date national guidelines, 79% accessed guidelines primarily on electronic devices. The TDF domains of âSocial Influencesâ (mean Likert score = 4.3) and âBeliefs about Consequencesâ (4.2) were key enablers, with healthcare workers encouraged to use guidelines and also recognising the value in doing so. âEnvironmental Resourcesâ (3.7) and âKnowledgeâ (3.3) were key barriers with limited, or variable access to guidelines and lack of confidence using them being notable issues. This was most noted for certain subgroups: children, HIV co-infected, pregnant women (2.7).
DISCUSSION: Current use of DR-TB guidelines in South Africa is suboptimal. Planned interventions should focus on overcoming the identified key barriers and might include an increased use of digital tools
Properties of a continuous-random-network model for amorphous systems
We use a Monte Carlo bond-switching method to study systematically the
thermodynamic properties of a "continuous random network" model, the canonical
model for such amorphous systems as a-Si and a-SiO. Simulations show
first-order "melting" into an amorphous state, and clear evidence for a glass
transition in the supercooled liquid. The random-network model is also extended
to study heterogeneous structures, such as the interface between amorphous and
crystalline Si.Comment: Revtex file with 4 figure
Event-based relaxation of continuous disordered systems
A computational approach is presented to obtain energy-minimized structures
in glassy materials. This approach, the activation-relaxation technique (ART),
achieves its efficiency by focusing on significant changes in the microscopic
structure (events). The application of ART is illustrated with two examples:
the structure of amorphous silicon, and the structure of Ni80P20, a metallic
glass.Comment: 4 pages, revtex, epsf.sty, 3 figure
Diffusion of gold nanoclusters on graphite
We present a detailed molecular-dynamics study of the diffusion and
coalescence of large (249-atom) gold clusters on graphite surfaces. The
diffusivity of monoclusters is found to be comparable to that for single
adatoms. Likewise, and even more important, cluster dimers are also found to
diffuse at a rate which is comparable to that for adatoms and monoclusters. As
a consequence, large islands formed by cluster aggregation are also expected to
be mobile. Using kinetic Monte Carlo simulations, and assuming a proper scaling
law for the dependence on size of the diffusivity of large clusters, we find
that islands consisting of as many as 100 monoclusters should exhibit
significant mobility. This result has profound implications for the morphology
of cluster-assembled materials
Rabl's model of the interphase chromosome arrangement tested in Chinise hamster cells by premature chromosome condensation and laser-UV-microbeam experiments
In 1885 Carl Rabl published his theory on the internal structure of the interphase nucleus. We have tested two predictions of this theory in fibroblasts grown in vitro from a female Chinese hamster, namely (1) the Rabl-orientation of interphase chromosomes and (2) the stability of the chromosome arrangement established in telophase throughout the subsequent interphase. Tests were carried out by premature chromosome condensation (PCC) and laser-UV-microirradiation of the interphase nucleus. Rabl-orientation of chromosomes was observed in G1 PCCs and G2 PCCs. The cell nucleus was microirradiated in G1 at one or two sites and pulse-labelled with 3H-thymidine for 2h. Cells were processed for autoradiography either immediately thereafter or after an additional growth period of 10 to 60h. Autoradiographs show unscheduled DNA synthesis (UDS) in the microirradiated nuclear part(s). The distribution of labelled chromatin was evaluated in autoradiographs from 1035 cells after microirradiation of a single nuclear site and from 253 cells after microirradiation of two sites. After 30 to 60h postincubation the labelled regions still appeared coherent although the average size of the labelled nuclear area fr increased from 14.2% (0h) to 26.5% (60h). The relative distance dr, i.e. the distance between two microirradiated sites divided by the diameter of the whole nucleus, showed a slight decrease with increasing incubation time. Nine metaphase figures were evaluated for UDS-label after microirradiation of the nuclear edge in G1. An average of 4.3 chromosomes per cell were labelled. Several chromosomes showed joint labelling of both distal chromosome arms including the telomeres, while the centromeric region was free from label. This label pattern is interpreted as the result of a V-shaped orientation of these particular chromosomes in the interphase nucleus with their telomeric regions close to each other at the nuclear edge. Our data support the tested predictions of the Rabl-model. Small time-dependent changes of the nuclear space occupied by single chromosomes and of their relative positions in the interphase nucleus seem possible, while the territorial organization of interphase chromosomes and their arrangement in general is maintained during interphase. The present limitations of the methods used for this study are discussed
Thermodynamic Behavior of a Model Covalent Material Described by the Environment-Dependent Interatomic Potential
Using molecular dynamics simulations we study the thermodynamic behavior of a
single-component covalent material described by the recently proposed
Environment-Dependent Interatomic Potential (EDIP). The parameterization of
EDIP for silicon exhibits a range of unusual properties typically found in more
complex materials, such as the existence of two structurally distinct
disordered phases, a density decrease upon melting of the low-temperature
amorphous phase, and negative thermal expansion coefficients for both the
crystal (at high temperatures) and the amorphous phase (at all temperatures).
Structural differences between the two disordered phases also lead to a
first-order transition between them, which suggests the existence of a second
critical point, as is believed to exist for amorphous forms of frozen water.
For EDIP-Si, however, the unusual behavior is associated not only with the open
nature of tetrahedral bonding but also with a competition between four-fold
(covalent) and five-fold (metallic) coordination. The unusual behavior of the
model and its unique ability to simulation the liquid/amorphous transition on
molecular-dynamics time scales make it a suitable prototype for fundamental
studies of anomalous thermodynamics in disordeered systems.Comment: 48 pages (double-spaced), 13 figure
- âŠ