25 research outputs found

    Pathogenicity of Metarhizium anisopliae (Metch) Sorok and Beauveria bassiana (Bals) Vuill to adult Phlebotomus duboscqi (Neveu-Lemaire) in the laboratory

    Get PDF
    Background & objectives: Biological control of sandflies using entomopathogenic fungi is a possible alternativeto the expensive synthetic chemical control. It is potentially sustainable, less hazardous, and relatively inexpensiveand merits further investigations. The objective of this study was to identify the most pathogenic fungal isolate(s)to sandflies in the laboratory.Methods: Isolates of entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were screenedfor their pathogenicity against Phlebotomus duboscqi. Adult flies were contaminated using the technique describedby Migiro et al (2010). Briefly, flies were exposed to 0.1 g of dry conidia evenly spread on a cotton velvet clothcovering the inner side of a cylindrical plastic tube (95 mm long × 48 mm diam). In all 25 sandflies weretransferred into the cylindrical tube and allowed to walk on the velvet for one minute, after which they weretransferred from the velvet into the cages in Perplex. Insects in the control treatments were exposed to fungusfree velvet cloth before being transferred into similar cages. The treatments were maintained at 25 ± 2°C,60–70% RH and 12L: 12D photoperiod. The experiment was replicated 5 times. The most pathogenic isolateswere selected for further studies.Results: A total of 19 isolates were screened against adult sandflies in the laboratory. Mortality in the controlswas approximately 16.8 ± 1.7 %. All the isolates were found to be pathogenic to P. duboscqi. Mortality rangedbetween 76.8 and 100% on all the fungal isolates tested. The lethal time taken to 50% (LT50) and 90% (LT90(mortality ranged from 3.0–7.8 days and from 5.3–16.2 days, respectively. The virulent isolates, causing mortalitiesof 97.5–100%, were selected for further studies.Interpretation & conclusion: The high susceptibility of sandflies to entomopathogenic fungi suggests that fungiare potential alternatives to chemical control methods. We conclude that application of entomopathogenic fungicould result in acute mortalities of sandflies and reduction of parasite transmission and subsequently, reductionof leishmaniasis risk. This method of biological control has great potential as a new strategy for leishmaniasiscontro

    Comparative performance of the Mbita trap, CDC light trap and the human landing catch in the sampling of Anopheles arabiensis, An. funestus and culicine species in a rice irrigation in western Kenya

    Get PDF
    BACKGROUND: Mosquitoes sampling is an important component in malaria control. However, most of the methods used have several shortcomings and hence there is a need to develop and calibrate new methods. The Mbita trap for capturing host-seeking mosquitoes was recently developed and successfully tested in Kenya. However, the Mbita trap is less effective at catching outdoor-biting Anopheles funestus and Anopheles arabiensis in Madagascar and, thus, there is need to further evaluate this trap in diverse epidemiological settings. This study reports a field evaluation of the Mbita trap in a rice irrigation scheme in Kenya METHODS: The mosquito sampling efficiency of the Mbita trap was compared to that of the CDC light trap and the human landing catch in western Kenya. Data was analysed by Bayesian regression of linear and non-linear models. RESULTS: The Mbita trap caught about 17%, 60%, and 20% of the number of An. arabiensis, An. funestus, and culicine species caught in the human landing collections respectively. There was consistency in sampling proportionality between the Mbita trap and the human landing catch for both An. arabiensis and the culicine species. For An. funestus, the Mbita trap portrayed some density-dependent sampling efficiency that suggested lowered sampling efficiency of human landing catch at low densities. The CDC light trap caught about 60%, 120%, and 552% of the number of An. arabiensis, An. funestus, and culicine species caught in the human landing collections respectively. There was consistency in the sampling proportionality between the CDC light trap and the human landing catch for both An. arabiensis and An. funestus, whereas for the culicines, there was no simple relationship between the two methods. CONCLUSIONS: The Mbita trap is less sensitive than either the human landing catch or the CDC light trap. However, for a given investment of time and money, it is likely to catch more mosquitoes over a longer (and hence more representative) period. This trap can therefore be recommended for use by community members for passive mosquito surveillance. Nonetheless, there is still a need to develop new sampling methods for some epidemiological settings. The human landing catch should be maintained as the standard reference method for use in calibrating new methods for sampling the human biting population of mosquitoes

    Plasmodium falciparum transmission and aridity: a Kenyan experience from the dry lands of Baringo and its implications for Anopheles arabiensis control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ecology of malaria vectors particularly in semi-arid areas of Africa is poorly understood. Accurate knowledge on this subject will boost current efforts to reduce the burden of malaria in sub-Saharan Africa. The objective of this study was to describe the dynamics of malaria transmission in two model semi-arid sites (Kamarimar and Tirion) in Baringo in Kenya.</p> <p>Methods</p> <p>Adult mosquitoes were collected indoors by pyrethrum spray collections (PSC) and outdoors by Centers for Disease Control (CDC) light traps and identified to species by morphological characteristics. Sibling species of <it>Anopheles gambiae </it>complex were further characterized by rDNA. PCR and enzyme-linked immuno-sorbent assays (ELISA) were used to test for <it>Plasmodium falciparum </it>circumsporozoite proteins and host blood meal sources respectively.</p> <p>Results</p> <p><it>Anopheles arabiensis </it>was not only the most dominant mosquito species in both study sites but also the only sibling species of <it>An. gambiae s.l. </it>present in the area. Other species identified in the study area were <it>Anopheles funestus</it>, <it>Anopheles pharoensis </it>and <it>Anopheles coustani</it>. For Kamarimar but not Tirion, the human blood index (HBI) for light trap samples was significantly higher than for PSC samples (Kamarimar, 0.63 and 0.11, Tirion, 0.48 and 0.43). The HBI for light trap samples was significantly higher in Kamarimar than in Tirion while that of PSC samples was significantly higher in Tirion than in Kamarimar. Entomological inoculation rates (EIR) were only detected for one month in Kamarimar and 3 months in Tirion. The number of houses in a homestead, number of people sleeping in the house, quality of the house, presence or absence of domestic animals, and distance to the animal shelter and the nearest larval habitat were significant predictors of <it>An. arabiensis </it>occurrence.</p> <p>Conclusion</p> <p>Malaria transmission in the study area is seasonal with <it>An. arabiensis </it>as the dominant vector. The fact this species feeds readily on humans and domestic animals suggest that zooprophylaxis may be a plausible malaria control strategy in semi-arid areas of Africa. The results also suggest that certain household characteristics may increase the risk of malaria transmission.</p

    Host choice and multiple blood feeding behaviour of malaria vectors and other anophelines in Mwea rice scheme, Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies were conducted between April 2004 and February 2006 to determine the blood-feeding pattern of <it>Anopheles </it>mosquitoes in Mwea Kenya.</p> <p>Methods</p> <p>Samples were collected indoors by pyrethrum spay catch and outdoors by Centers for Disease Control light traps and processed for blood meal analysis by an Enzyme-linked Immunosorbent Assay.</p> <p>Results</p> <p>A total of 3,333 blood-fed <it>Anopheles </it>mosquitoes representing four <it>Anopheles </it>species were collected and 2,796 of the samples were assayed, with <it>Anopheles arabiensis </it>comprising 76.2% (n = 2,542) followed in decreasing order by <it>Anopheles coustani </it>8.9% (n = 297), <it>Anopheles pharoensis </it>8.2% (n = 272) and <it>Anopheles funestus </it>6.7% (n = 222). All mosquito species had a high preference for bovine (range 56.3–71.4%) over human (range 1.1–23.9%) or goat (0.1–2.2%) blood meals. Some individuals from all the four species were found to contain mixed blood meals. The bovine blood index (BBI) for <it>An. arabiensis </it>was significantly higher for populations collected indoors (71.8%), than populations collected outdoors (41.3%), but the human blood index (HBI) did not differ significantly between the two populations. In contrast, BBI for indoor collected <it>An. funestus </it>(51.4%) was significantly lower than for outdoor collected populations (78.0%) and the HBI was significantly higher indoors (28.7%) than outdoors (2.4%). Anthropophily of <it>An. funestus </it>was lowest within the rice scheme, moderate in unplanned rice agro-ecosystem, and highest within the non-irrigated agro-ecosystem. Anthropophily of <it>An. arabiensis </it>was significantly higher in the non-irrigated agro-ecosystem than in the other agro-ecosystems.</p> <p>Conclusion</p> <p>These findings suggest that rice cultivation has an effect on host choice by <it>Anopheles </it>mosquitoes. The study further indicate that zooprophylaxis may be a potential strategy for malaria control, but there is need to assess how domestic animals may influence arboviruses epidemiology before adapting the strategy.</p

    A Simple Method for Storing Mosquito Bloodmeals for Human DNA Profiling

    No full text
    A simple method for storing mosquito bloodmeal samples, which permits extraction and detection of human DNA after polymerase chain reaction (PCR) amplification of target DNA sequences, was tested. Abdomens of bloodfed field-collected Anopheles gambiae s.l. and An. funestus mosquitoes (Diptera: Culicidae) were directly expressed onto filter paper, air-dried and stored at room temperature. DNA was extracted and amplified at human hypervariable loci TC11, VWA and D1S80. The amplified products were separated using polyacrylamide gel electrophoresis, visualised by silver staining, and results compared with those from mosquitoes that had been preserved in liquid nitrogen. DNA from blooded abdomens stored on dried filter papers could be amplified with greater than 95 % success for any locus, storage temperature, mosquito species or storage duration. Collection and drying of mosquito bloodmeals directly onto filter paper appears to be a more convenient method for sample transportation and storage than the conventional method involving cryopreservation. Nous avons testé une méthode simple de conservation d'échantillons de repas de sang qui permette l'extraction et la détection d'ADN humain après amplification par PCR de séquences cibles. Les abdomens de moustiques post-prandiaux collectés sur le terrain ( Anopheles gambiae et Anopheles funestus ) sont exprimés directement sur un papier filtre, puis sont séchés à l'air et conservés à température ambiante. L'ADN est alors extrait et amplifiés aux loci hypervariables TC11, VWA, et D1S80. Les produits amplifiés sont séparés par électrophorèse sur gel de polyacrylamide et visualisés par coloration aux sels d'argent. Les résultats ont été comparés à ceux obtenus à partir de moustiques cryoconservés en azote liquide. Ils montrent que l'ADN d'abdomens contenant du sang conservés sur papier filtre eut être amplifié avec un taux de réussite excédant 95 % quelque soient le locus, la température de conservation, l'espèce de moustique considérée ou la durée de conservation. Le prélèvement de repas de sang de moustique directement sur papier filtre apparaît donc comme une méthode pratique pour le transport et la conservation des échantillons, sans avoir recours à la cryoconservation ou toute autre manipulation sur le terrain

    Parasites and vectors of malaria on Rusinga Island, Western Kenya

    No full text
    Abstract Background There is a dearth of information on malaria endemicity in the islands of Lake Victoria in western Kenya. In this study malaria prevalence and Plasmodium sporozoite rates on Rusinga Island were investigated. The contribution of different Anopheles species to indoor and outdoor transmission of malaria was also determined. Methods Active case detection through microscopy was used to diagnose malaria in a 10% random sample of the human population on Rusinga Island and a longitudinal entomological survey conducted in Gunda village in 2012. Nocturnally active host-seeking mosquitoes were captured indoors and outdoors using odour-baited traps. Anopheles species were tested for the presence of Plasmodium parasites using an enzyme linked immunosorbent assay. All data were analyzed using generalized linear models. Results Single infections of Plasmodium falciparum (88.1%), P. malariae (3.96%) and P. ovale (0.79%) as well as multiple infections (7.14%) of these parasites were found on Rusinga Island. The overall malaria prevalence was 10.9%. The risk of contracting malaria was higher among dwellers of Rusinga West than Rusinga East locations (Odds Ratio [OR] = 1.5, 95% Confidence Interval [CI] 1.14 – 1.97, P = 0.003). Parasite positivity was significantly associated with individuals who did not use malaria protective measures (OR = 2.65, 95% CI 1.76 – 3.91, p < 0.001). A total of 1,684 mosquitoes, including 74 anophelines, were captured. Unlike Culex species, more of which were collected indoors than outdoors (P < 0.001), the females of An. gambiae s.l. (P = 0.477), An. funestus s.l. (P = 0.153) and Mansonia species captured indoors versus outdoors were not different. The 46 An. gambiae s.l. collected were mainly An. arabiensis (92.3%). Of the 62 malaria mosquitoes tested, 4, including 2 indoor and 2 outdoor-collected individuals had Plasmodium. Conclusion The rather significant and unexpected contribution of P. malariae and P. ovale to the overall malaria prevalence on Rusinga Island underscores the epidemiological importance of these species in the big push towards eliminating malaria. Although current entomological interventions mainly target indoor environments, additional strategies should be considered to prevent outdoor transmission of malaria
    corecore