2 research outputs found

    Modulation of a Photoswitchable Dual-Color Quantum Dot containing a Photochromic FRET Acceptor and an Internal Standard

    No full text
    Photoswitchable semiconductor nanoparticles, quantum dots (QDs), couple the advantages of conventional QDs with the ability to reversibly modulate the QD emission, thereby improving signal detection by rejection of background signals. Using a simple coating methodology with polymers incorporating a diheteroarylethene photochromic FRET acceptor as well as a spectrally distinct organic fluorophore, photoswitchable QDs were prepared that are small, biocompatible, and feature ratiometric dual emission. With programmed irradiation, the fluorescence intensity ratio can be modified by up to ∼100%

    Photocontrolled Binding and Binding-Controlled Photochromism within Anthracene-Modified DNA

    No full text
    Modified DNA strands undergo a reversible light-induced reaction involving the intramolecular photodimerization of two appended anthracene tags. The photodimers exhibit markedly different binding behavior toward a complementary strand that depends on the number of bases between the modified positions. By preforming the duplex, photochromism can be suppressed, illustrating dual-mode gated behavior
    corecore