24 research outputs found

    Viability of a Five-Strain Mixture of Listeria monocytogenes in Vacuum-Sealed Packages of Frankfurters, Commercially Prepared with and without 2.0 or 3.0% Added Potassium Lactate, during Extended Storage at 4 and 10° C†‡

    Get PDF
    The viability of Listeria monocytogenes was monitored on frankfurters containing added potassium lactate that were obtained directly from a commercial manufacturer. Eight links (ca. 56 g each) were transferred aseptically from the original vacuum-sealed bulk packages into nylon-polyethylene bags. Each bag then received a 4-ml portion of a five-strain mixture of the pathogen. Frankfurters containing 2.0 or 3.0% potassium lactate were evaluated using 20 CFU per package, and frankfurters containing 3.0% potassium lactate were evaluated using 500 CFU per package. The packages were vacuum-sealed and stored at 4 or 10°C for up to 90 or 60 days, respectively. During storage at 4°C, pathogen numbers remained at about 1.6 log10 CFU per package over 90 days in packages containing frankfurters with 2.0% potassium lactate that were inoculated with about 20 CFU. In packages containing frankfurters with 3.0% potassium lactate that were inoculated with about 20 CFU and stored at 4°C, pathogen numbers remained at about 1..

    Isolation of Escherichia coli O157:H7 from Intact Colon Fecal Samples of Swine1

    Get PDF
    Escherichia coli O157:H7 was recovered from colon fecal samples of pigs. Polymerase chain reaction confirmed two genotypes: isolates harboring the eaeA, stx1, and stx2 genes and isolates harboring the eaeA, stx1, and hly933 genes. We demonstrate that swine in the United States can harbor potentially pathogenic E. coli O157:H7

    Evaluation of post-fermentation heating times and temperatures for controlling Shiga toxin-producing Escherichia coli cells in a non-dried, pepperoni-type sausage

    Get PDF
    Coarse ground meat was mixed with non-meat ingredients and starter culture (Pediococcus acidilactici) and then inoculated with an 8-strain cocktail of Shiga toxinproducing Escherichia coli (ca. 7.0 log CFU/g). Batter was fine ground, stuffed into fibrous casings, and fermented at 35.6°C and ca. 85% RH to a final target pH of ca. pH 4.6 or ca. pH 5.0. After fermentation, the pepperoni- like sausage were heated to target internal temperatures of 37.8°, 43.3°, 48.9°, and 54.4°C and held for 0.5 to 12.5 h. Regardless of the heating temperature, the endpoint pH in products fermented to a target pH of pH 4.6 and pH 5.0 was pH 4.56±0.13 (range of pH 4.20 to pH 4.86) and pH 4.96±0.12 (range of pH 4.70 to pH 5.21), respectively. Fermentation alone delivered ca. a 0.3- to 1.2-log CFU/g reduction in pathogen numbers. Fermentation to ca. pH 4.6 or ca. pH 5.0 followed by post-fermentation heating to 37.8° to 54.4°C and holding for 0.5 to 12.5 h generated total reductions of ca. 2.0 to 6.7 log CFU/g

    Behavior of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium in teewurst, a raw spreadable sausage

    Get PDF
    The fate of Listeria monocytogenes, Salmonella Typhimurium, or Escherichia coli O157:H7 were separately monitored both in and on teewurst, a traditional raw and spreadable sausage of Germanic origin. Multi-strain cocktails of each pathogen (ca. 5.0 log CFU/g) were used to separately inoculate teewurst that was subsequently stored at 1.5, 4, 10, and 21 °C. When inoculated into commercially-prepared batter just prior to stuffing, in general, the higher the storage temperature, the greater the lethality. Depending on the storage temperature, pathogen levels in the batter decreased by 2.3 to 3.4, ca. 3.8, and 2.2 to 3.6 log CFU/g for E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, during storage for 30 days. When inoculated onto both the top and bottom faces of sliced commercially-prepared finished product, the results for all four temperatures showed a decrease of 0.9 to 1.4, 1.4 to 1.8, and 2.2 to 3.0 log CFU/g for E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, over the course of 21 days. With the possible exceptions for salt and carbohydrate levels, chemical analyses of teewurst purchased from five commercial manufacturers revealed only subtle differences in proximate composition for this product type. Our data establish that teewurst does not provide a favourable environment for the survival of E. coli O157:H7, S. Typhimurium, or L. monocytogenes inoculated either into or onto the product

    Fate of Surface-Inoculated Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium on Kippered Beef during Extended Storage at Refrigeration and Abusive Temperatures

    No full text
    The behavior of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium on kippered beef was evaluated. Individual pieces of the product were separately inoculated on the top and bottom surfaces with each three- to six-strain pathogen cocktail at ca. 6.0 log CFU per piece and stored at 4, 10, 21, or 30 degrees C for up to 28 days in each of two trials. When kippered beef was inoculated with E coli O157:H7, Salmonella Typhimurium, or L. monocytogenes and stored at 4, 10, 2 1, or 30 degrees C for up to 28 days, pathogen numbers decreased ca. 0.4 to 0.9, 1.0 to 1.8, 3.0 to >= 5.25, and >= 5.0 to 5.25 log CFU per piece, respectively. Average D-values for E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes stored at 4 to 30 degrees C for 28 days were ca. 41 to 4.6, 40.8 to 5.3, and 29.5 to 4.3 days, respectively. As expected, the higher the storage temperature, the greater the level and rate of inactivation for all three pathogens. These data establish that kippered beef does not provide an environment conducive to proliferation of these pathogens

    Use of Pulsed-Field Gel Electrophoresis To Characterize the Heterogeneity and Clonality of Salmonella Isolates Obtained from the Carcasses and Feces of Swine at Slaughter

    No full text
    Salmonella enterica isolates were recovered from swine at a collaborating processing plant over a 2-month period in the spring of 2000. In the present study, molecular subtyping by pulsed-field gel electrophoresis (PFGE) was performed on the 581 confirmed Salmonella isolates from the 84 Salmonella-positive samples obtained from the previous study. A total of 32 different PFGE pulsotypes were observed visually, and a BioNumerics software analysis clustered those pulsotypes into 12 PFGE groups. The B, F, and G groups predominated throughout the sampling period and were isolated from 39, 22, and 13% of the swine, respectively. In addition, multiple isolates were obtained from 67 of the 84 Salmonella-positive samples, and subtyping revealed multiple PFGE profiles in 35 of these 67 (62%) samples. Both carcass and fecal isolates of Salmonella were recovered from 13 swine, resulting in “matched” samples. Molecular typing of the 252 isolates recovered from the matched samples revealed that 7 (54%) of the 13 carcasses were contaminated with Salmonella pulsotypes that were not isolated from the feces of the same animal. Conversely, from 6 of the 13 (46%) matched animals, Salmonella clonal types were isolated from the feces that were not isolated from the carcass of the same animal. These data establish that each lot of swine introduces new contaminants into the plant environment and that swine feces from one animal can contaminate many carcasses. In addition, these results indicate that the examination of multiple Salmonella isolates from positive samples is necessary to determine the variety of potential contaminants of swine carcasses during slaughter and processing

    Relatedness of Listeria monocytogenes Isolates Recovered from Selected Ready-To-Eat Foods and Listeriosis Patients in the United States

    No full text
    Pulsed-field gel electrophoresis and serotyping were performed for 544 isolates of Listeria monocytogenes, including 502 isolates recovered from contaminated samples from 31,705 retail ready-to-eat (RTE) food products and 42 isolates recovered from human cases of listeriosis. The isolates were from Maryland (294 isolates) and California (250 isolates) and were collected in 2000 and 2001. The isolates were placed into 16 AscI pulsogroups (level of relatedness within each group, ≥66%), 139 AscI pulsotypes (levels of relatedness, ≥25% to 100%), and eight serotypes (serotypes 1/2a, 1/2b, 1/2c, 3a, 3b, 4b, 4c, and 4d). The most frequently found pulsotypes belonged to either pulsogroup A (150 food isolates plus 4 clinical isolates) or pulsogroup B (104 food isolates plus 5 clinical isolates). The majority of the 502 food isolates were either serotype 1/2a (298 isolates) or serotype 1/2b (133 isolates), whereas the majority of the 42 clinical isolates were either serotype 1/2a (19 isolates) or serotype 4b (15 isolates). Additionally, 13 clinical isolates displayed pulsotypes also found in food isolates, whereas the remaining 29 clinical isolates displayed 24 unique pulsotypes. These data indicate that most (86%) of the L. monocytogenes subtypes found in the RTE foods sampled belonged to only two serotypes and that 90% of the isolates displayed 73 pulsotypes, with 107 isolates displaying pulsotype 1. These data should help define the distribution and relatedness of isolates found in RTE foods in comparison with isolates that cause listeriosis
    corecore