45 research outputs found

    Adult-Onset Gilles de la Tourette Syndrome: Psychogenic or Organic? The Challenge of Abnormal Neurophysiological Findings

    Get PDF
    Gilles de la Tourette syndrome (GTS) is characterized by multiple motor and vocal tics. Adult-onset cases are rare and may be due to “reactivation” of childhood tics, or secondary to psychiatric or genetic diseases, or due to central nervous system lesions of different etiologies. Late-onset psychogenic motor/vocal tics resembling GTS have been described. Neurophysiology may serve to differentiate organic from functional GTS. Altered blink reflex pre-pulse inhibition (BR-PPI), blink reflex excitability recovery (BR-ERC), and short-interval intracortical inhibition (SICI) have been described in GTS. We report a 48-years-old male, who developed numerous motor/vocal tics 2 months after sustaining non-commotional craniofacial trauma in a car accident. Both his father and brother had died earlier in car crashes. He presented with blepharospasm-like forced lid closure, forceful lip pursing, noisy suction movements, and deep moaning sounds, occurring in variable combinations, without warning symptoms or internal “urge.” Tics showed low distractibility and these increased with attention. Standard magnetic resonance imaging, electroencephalography, and evoked potentials were unremarkable. Neuropsychology diagnosed moderately impaired intellect, attention, and executive functions. Psychiatric assessment revealed somatization disorder and generalized anxiety. BR-PPI was unremarkable, while BR-ERC was enhanced, even showing facilitation at short intervals. SICI was markedly reduced at 1 and 3 ms and intracortical facilitation (ICF) was enhanced at 10 ms. The patient fulfilled Fahn and Williams' diagnostic criteria for a psychogenic movement disorder. Neurophysiology, however, documented hyperexcitability of motor cortex and brainstem. We suggest that—similar to what has been reported in psychogenic dystonia—a pre-existing predisposition may have led to the functional hyperkinetic disorder in response to severe psychic stress

    Ipsilateral motor evoked potentials in a patient with unihemispheric cortical atrophy due to Rasmussen encephalitis

    Get PDF
    The role of the ipsilaterally descending motor pathways in the recovery mechanisms after unilateral hemispheric damage is still poorly understood. Motor output reorganization was investigated in a 56-year-old male patient with acquired unilateral hemispheric atrophy due to Rasmussen encephalitis. In particular, the ipsilateral corticospinal pathways were explored using focal transcranial magnetic stimulation. In the first dorsal interosseous and wrist extensors muscles, the median amplitudes of the ipsilateral motor evoked potentials induced by transcranial magnetic stimulation in the patient were higher than those of 10 age-matched healthy control subjects. In the biceps brachii muscle, the median amplitudes of the ipsilateral motor evoked potentials were the second largest in the patient compared to the controls. This study demonstrated a reinforcement of ipsilateral motor projections from the unaffected motor cortex to the hemiparetic hand in a subject with acquired unihemispheric cortical damage

    Usefulness of EEG Techniques in Distinguishing Frontotemporal Dementia from Alzheimer's Disease and Other Dementias

    Get PDF
    The clinical distinction of frontotemporal dementia (FTD) and Alzheimer's disease (AD) may be difficult. In this narrative review we summarize and discuss the most relevant electroencephalography (EEG) studies which have been applied to demented patients with the aim of distinguishing the various types of cognitive impairment. EEG studies revealed that patients at an early stage of FTD or AD displayed different patterns in the cortical localization of oscillatory activity across different frequency bands and in functional connectivity. Both classical EEG spectral analysis and EEG topography analysis are able to differentiate the different dementias at group level. The combination of standardized low-resolution brain electromagnetic tomography (sLORETA) and power parameters seems to improve the sensitivity, but spectral and connectivity biomarkers able to differentiate single patients have not yet been identified. The promising EEG findings should be replicated in larger studies, but could represent an additional useful, noninvasive, and reproducible diagnostic tool for clinical practice

    Transcranial magnetic stimulation and gait disturbances in Parkinson's disease: A systematic review

    No full text
    Transcranial magnetic stimulation (TMS) may offer a reliable means of characterizing important pathophysiologic aspects of motor impairments in Parkinson's disease (PD). Moreover, high-frequency repetitive TMS (rTMS), especially if delivered bilaterally over motor cortical regions, can have beneficial effects on parkinsonian motor symptoms. However, only a few studies have investigated the effects of rTMS on freezing of gait (FOG) and other gait disturbances in PD. We aimed at investigating in this narrative review the usefulness of TMS for exploring the pathophysiology of gait impairment and at evaluating the therapeutic effects of rTMS in this context. The combination of rTMS and treadmill training was found to enhance the effect of physical therapy. Use of an H-coil enables stimulation of deep regions of the brain (for example medial prefrontal cortex) and may be used as a target for add-on therapy in the future. In contrast, theta burst stimulation has proven to be ineffective in treating gait disturbances in PD patients. Dual-mode NIBS, in particular preconditioning motor cortex rTMS by transcranial direct current stimulation, might also represent a novel therapeutic approach for patients with gait disturbances. Recent studies suggest that the supplementary motor area could be an appropriate target for brain stimulation when treating PD patients with FOG. Further large sample and well-designed clinical studies are required to evaluate how the possible positive effects of rTMS can be sustained over time and to determine the optimal stimulation protocols including target, stimulation intensity/duration and number of sessions

    TMS–EEG Co-Registration in Patients with Mild Cognitive Impairment, Alzheimer’s Disease and Other Dementias: A Systematic Review

    No full text
    An established method to assess effective brain connectivity is the combined use of transcranial magnetic stimulation with simultaneous electroencephalography (TMS–EEG) because TMS-induced cortical responses propagate to distant anatomically connected brain areas. Alzheimer’s disease (AD) and other dementias are associated with changes in brain networks and connectivity, but the underlying pathophysiology of these processes is poorly defined. We performed here a systematic review of the studies employing TMS–EEG co-registration in patients with dementias. TMS–EEG studies targeting the motor cortex have revealed a significantly reduced TMS-evoked P30 in AD patients in the temporo-parietal cortex ipsilateral to stimulation side as well as in the contralateral fronto-central area, and we have demonstrated a deep rearrangement of the sensorimotor system even in mild AD patients. TMS–EEG studies targeting other cortical areas showed alterations of effective dorsolateral prefrontal cortex connectivity as well as an inverse correlation between prefrontal-to-parietal connectivity and cognitive impairment. Moreover, TMS–EEG analysis showed a selective increase in precuneus neural activity. TMS–EEG co-registrations can also been used to investigate whether different drugs may affect cognitive functions in patients with dementias
    corecore