374 research outputs found

    Computation-Communication Trade-offs and Sensor Selection in Real-time Estimation for Processing Networks

    Full text link
    Recent advances in electronics are enabling substantial processing to be performed at each node (robots, sensors) of a networked system. Local processing enables data compression and may mitigate measurement noise, but it is still slower compared to a central computer (it entails a larger computational delay). However, while nodes can process the data in parallel, the centralized computational is sequential in nature. On the other hand, if a node sends raw data to a central computer for processing, it incurs communication delay. This leads to a fundamental communication-computation trade-off, where each node has to decide on the optimal amount of preprocessing in order to maximize the network performance. We consider a network in charge of estimating the state of a dynamical system and provide three contributions. First, we provide a rigorous problem formulation for optimal real-time estimation in processing networks in the presence of delays. Second, we show that, in the case of a homogeneous network (where all sensors have the same computation) that monitors a continuous-time scalar linear system, the optimal amount of local preprocessing maximizing the network estimation performance can be computed analytically. Third, we consider the realistic case of a heterogeneous network monitoring a discrete-time multi-variate linear system and provide algorithms to decide on suitable preprocessing at each node, and to select a sensor subset when computational constraints make using all sensors suboptimal. Numerical simulations show that selecting the sensors is crucial. Moreover, we show that if the nodes apply the preprocessing policy suggested by our algorithms, they can largely improve the network estimation performance.Comment: 15 pages, 16 figures. Accepted journal versio

    Distributed multi-agent Gaussian regression via finite-dimensional approximations

    Full text link
    We consider the problem of distributedly estimating Gaussian processes in multi-agent frameworks. Each agent collects few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed with limited computational and communication capabilities and to gather MM noisy measurements in total on input locations independently drawn from a known common probability density. The optimal solution would require agents to exchange all the MM input locations and measurements and then invert an M×MM \times M matrix, a non-scalable task. Differently, we propose two suboptimal approaches using the first EE orthonormal eigenfunctions obtained from the \ac{KL} expansion of the chosen kernel, where typically EME \ll M. The benefits are that the computation and communication complexities scale with EE and not with MM, and computing the required statistics can be performed via standard average consensus algorithms. We obtain probabilistic non-asymptotic bounds that determine a priori the desired level of estimation accuracy, and new distributed strategies relying on Stein's unbiased risk estimate (SURE) paradigms for tuning the regularization parameters and applicable to generic basis functions (thus not necessarily kernel eigenfunctions) and that can again be implemented via average consensus. The proposed estimators and bounds are finally tested on both synthetic and real field data

    Polarization control for slow and fast light in fiber optical, Raman-assisted, parametric amplification

    Get PDF
    Efficient slow and fast light fiber devices based on narrow band optical parametric amplification require a strict polarization control of the waves involved in the interaction. The use of high birefringence and spun fibers is studied theoretically, possible impairments evaluated, and design parameters determined.Comment: 20 pages, 7 figures, preprint submitted to Comptes Rendue

    Asynchronous Distributed Optimization over Lossy Networks via Relaxed ADMM: Stability and Linear Convergence

    Full text link
    In this work we focus on the problem of minimizing the sum of convex cost functions in a distributed fashion over a peer-to-peer network. In particular, we are interested in the case in which communications between nodes are prone to failures and the agents are not synchronized among themselves. We address the problem proposing a modified version of the relaxed ADMM, which corresponds to the Peaceman-Rachford splitting method applied to the dual. By exploiting results from operator theory, we are able to prove the almost sure convergence of the proposed algorithm under general assumptions on the distribution of communication loss and node activation events. By further assuming the cost functions to be strongly convex, we prove the linear convergence of the algorithm in mean to a neighborhood of the optimal solution, and provide an upper bound to the convergence rate. Finally, we present numerical results testing the proposed method in different scenarios.Comment: To appear in IEEE Transactions on Automatic Contro

    A Partition-Based Implementation of the Relaxed ADMM for Distributed Convex Optimization over Lossy Networks

    Full text link
    In this paper we propose a distributed implementation of the relaxed Alternating Direction Method of Multipliers algorithm (R-ADMM) for optimization of a separable convex cost function, whose terms are stored by a set of interacting agents, one for each agent. Specifically the local cost stored by each node is in general a function of both the state of the node and the states of its neighbors, a framework that we refer to as `partition-based' optimization. This framework presents a great flexibility and can be adapted to a large number of different applications. We show that the partition-based R-ADMM algorithm we introduce is linked to the relaxed Peaceman-Rachford Splitting (R-PRS) operator which, historically, has been introduced in the literature to find the zeros of sum of functions. Interestingly, making use of non expansive operator theory, the proposed algorithm is shown to be provably robust against random packet losses that might occur in the communication between neighboring nodes. Finally, the effectiveness of the proposed algorithm is confirmed by a set of compelling numerical simulations run over random geometric graphs subject to i.i.d. random packet losses.Comment: Full version of the paper to be presented at Conference on Decision and Control (CDC) 201

    Accelerated Probabilistic State Estimation in Distribution Grids via Model Order Reduction

    Full text link
    This paper applies a custom model order reduction technique to the distribution grid state estimation problem. Specifically, the method targets the situation where, due to pseudo-measurement uncertainty, it is advantageous to run the state estimation solver potentially thousands of times over sampled input perturbations in order to compute probabilistic bounds on the underlying system state. This routine, termed the Accelerated Probabilistic State Estimator (APSE), efficiently searches for the solutions of sequential state estimation problems in a low dimensional subspace with a reduced order model (ROM). When a sufficiently accurate solution is not found, the APSE reverts to a conventional QR factorization-based Gauss-Newton solver. It then uses the resulting solution to preform a simple basis expansion of the low-dimensional subspace, thus improving the reduced model solver. Simulated test results, collected from the unbalanced three-phase 8500-node distribution grid, show the resulting algorithm to be almost an order of magnitude faster than a comparable full-order Gauss-Newton solver and thus potentially fast enough for real-time use.Comment: submitted to PESGM2
    corecore