16 research outputs found

    Identification and characterization of the dominant thermal resistance in lithium-ion batteries using operando 3-omega sensors

    Get PDF
    Poor thermal transport within lithium-ion batteries fundamentally limits their performance, safety, and lifetime, in spite of external thermal management systems. All prior efforts to understand the origin of batteries' mysteriously high thermal resistance have been confined to ex situ measurements without understanding the impact of battery operation. Here, we develop a frequency-domain technique that employs sensors capable of measuring spatially resolved intrinsic thermal transport properties within a live battery while it is undergoing cycling. Our results reveal that the poor battery thermal transport is due to high thermal contact resistance between the separator and both electrode layers and worsens as a result of formation cycling, degrading total battery thermal transport by up to 70%. We develop a thermal model of these contact resistances to explain their origin. These contacts account for up to 65% of the total thermal resistance inside the battery, leading to far-reaching consequences for the thermal design of batteries. Our technique unlocks new thermal measurement capabilities for future battery research

    Temperature dependence of secondary electron emission: A new route to nanoscale temperature measurement using scanning electron microscopy

    No full text
    Scanning electron microscopy (SEM) is ubiquitous for imaging but is not generally regarded as a tool for thermal measurements. Here, the temperature dependence of secondary electron (SE) emission from a sample's surface is investigated. Spatially uniform SEM images and the net charge flowing through a sample were recorded at different temperatures to quantify the temperature dependence of SE emission and electron absorption. The measurements also demonstrated charge conservation during thermal cycling by placing the sample inside a Faraday cup to capture the emitted SEs and back-scattered electrons from the sample. The temperature dependence of SE emission was measured for four semiconducting materials (Si, GaP, InP, and GaAs) with response coefficients found to be of magnitudes ∼100-1000 ppm/K. The detection limits for temperature changes were no more than ±8 °C for 60 s acquisition time
    corecore