9,708 research outputs found

    Algebraic Cayley Graphs over Finite Fields

    Full text link
    A new algebraic Cayley graph is constructed using finite fields. Its connectedness and diameter bound are studied via Weil's estimate for character sums. These graphs provide a new source of expander graphs, extending classical results of Chung

    Electronic, mechanical, and thermodynamic properties of americium dioxide

    Full text link
    By performing density functional theory (DFT) +UU calculations, we systematically study the electronic, mechanical, tensile, and thermodynamic properties of AmO2_{2}. The experimentally observed antiferromagnetic insulating feature [J. Chem. Phys. 63, 3174 (1975)] is successfully reproduced. It is found that the chemical bonding character in AmO2_{2} is similar to that in PuO2_{2}, with smaller charge transfer and stronger covalent interactions between americium and oxygen atoms. The valence band maximum and conduction band minimum are contributed by 2pβˆ’5fp-5f hybridized and 5ff electronic states respectively. The elastic constants and various moduli are calculated, which show that AmO2_{2} is less stable against shear forces than PuO2_{2}. The stress-strain relationship of AmO2_{2} is examined along the three low-index directions by employing the first-principles computational tensile test method. It is found that similar to PuO2_{2}, the [100] and [111] directions are the strongest and weakest tensile directions, respectively, but the theoretical tensile strengths of AmO2_{2} are smaller than those of PuO2_{2}. The phonon dispersion curves of AmO2_{2} are calculated and the heat capacities as well as lattice expansion curve are subsequently determined. The lattice thermal conductance of AmO2_{2} is further evaluated and compared with attainable experiments. Our present work integrally reveals various physical properties of AmO2_{2} and can be referenced for technological applications of AmO2_{2} based materials.Comment: 23 pages, 8 figure
    • …
    corecore