101,206 research outputs found

    Manual of phosphoric acid fuel cell power plant optimization model and computer program

    Get PDF
    An optimized cost and performance model for a phosphoric acid fuel cell power plant system was derived and developed into a modular FORTRAN computer code. Cost, energy, mass, and electrochemical analyses were combined to develop a mathematical model for optimizing the steam to methane ratio in the reformer, hydrogen utilization in the PAFC plates per stack. The nonlinear programming code, COMPUTE, was used to solve this model, in which the method of mixed penalty function combined with Hooke and Jeeves pattern search was chosen to evaluate this specific optimization problem

    Phosphoric acid fuel cell power plant system performance model and computer program

    Get PDF
    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels

    Manual of phosphoric acid fuel cell power plant cost model and computer program

    Get PDF
    Cost analysis of phosphoric acid fuel cell power plant includes two parts: a method for estimation of system capital costs, and an economic analysis which determines the levelized annual cost of operating the system used in the capital cost estimation. A FORTRAN computer has been developed for this cost analysis

    Manual of phosphoric acid fuel cell stack three-dimensional model and computer program

    Get PDF
    A detailed distributed mathematical model of phosphoric acid fuel cell stack have been developed, with the FORTRAN computer program, for analyzing the temperature distribution in the stack and the associated current density distribution on the cell plates. Energy, mass, and electrochemical analyses in the stack were combined to develop the model. Several reasonable assumptions were made to solve this mathematical model by means of the finite differences numerical method

    Quantum Corrals, Eigenmodes and Quantum Mirages in s-wave Superconductors

    Full text link
    We study the electronic structure of magnetic and non-magnetic quantum corrals embedded in s-wave superconductors. We demonstrate that a quantum mirage of an impurity bound state peak can be projected from the occupied into the empty focus of a non-magnetic quantum corral via the excitation of the corral's eigenmodes. We observe an enhanced coupling between magnetic impurities inside the corral, which can be varied through oscillations in the corral's impurity potential. Finally, we discuss the form of eigenmodes in magnetic quantum corrals.Comment: 4 pages, 4 figure

    Direct Measurement of Quantum Dot Spin Dynamics using Time-Resolved Resonance Fluorescence

    Full text link
    We temporally resolve the resonance fluorescence from an electron spin confined to a single self-assembled quantum dot to measure directly the spin's optical initialization and natural relaxation timescales. Our measurements demonstrate that spin initialization occurs on the order of microseconds in the Faraday configuration when a laser resonantly drives the quantum dot transition. We show that the mechanism mediating the optically induced spin-flip changes from electron-nuclei interaction to hole-mixing interaction at 0.6 Tesla external magnetic field. Spin relaxation measurements result in times on the order of milliseconds and suggest that a B−5B^{-5} magnetic field dependence, due to spin-orbit coupling, is sustained all the way down to 2.2 Tesla.Comment: An additional EPAPS file in PDF format is available for download at the publications section of our website http://www.amop.phy.cam.ac.uk/amop-ma
    • …
    corecore