132 research outputs found
Increase in TNF-α and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a)
We find that CD11c+ cells with many markers of dendritic cells (DCs) are a major cell type in the skin lesions of psoriasis. These CD11c + cells, which are evident in both epidermis and dermis, are the sites for the expression of two mediators of inflammation, inducible nitric oxide synthase (iNOS) and TNF-α in diseased skin. These cells express HLA-DR, CD40, and CD86, lack the Langerin and CD14 markers of Langerhans cells and monocytes, respectively, and to a significant extent express the DC maturation markers DC-LAMP and CD83. Treatment of psoriasis with efalizumab (anti-CD11a a, Raptiva) strongly reduces infiltration by these DCs in patients responding to this agent. Disease activity after therapy was more related to DC infiltrates and iNOS mRNA levels than T cell infiltrates, and CD11c+ cells responded more quickly to therapy than epidermal keratinocytes. Our results suggest that a type of DC, which resembles murine Tip-DCs that can accumulate during infection, has proinflammatory effects in psoriasis through nitric oxide and TNF-α production, and can be an important target for suppressive therapies
Psoriasis vulgaris flare during efalizumab therapy does not preclude future use: a case series
BACKGROUND: Severe psoriasis vulgaris can be extremely difficult to treat in some patients, even with the newer biological therapies available today. CASE PRESENTATIONS: We present two patients with severe chronic plaque psoriasis who received numerous systemic anti-psoriatic therapies with varied results. Both responded well to initial treatment with efalizumab (anti-CD11a), but then experienced a flare of their disease after missing a dose. However, after disease stablization, both patients responded well to re-introduction of efalizumab, one patient requiring concurrent treatment with infliximab (anti-TNF-α). CONCLUSION: These cases are presented to characterize this "flare" reaction, and to inform health care providers that efalizumab can still be administered after disease flare, and again may be a successful therapy
Evaluation of the Psoriasis Transcriptome across Different Studies by Gene Set Enrichment Analysis (GSEA)
Our objective was to develop a consistent molecular definition of psoriasis. There have been several published microarray studies of psoriasis, and we compared disease-related genes identified across these different studies of psoriasis with our own in order to establish a consensus.We present a psoriasis transcriptome from a group of 15 patients enrolled in a clinical study, and assessed its biological validity using a set of important pathways known to be involved in psoriasis. We also identified a key set of cytokines that are now strongly implicated in driving disease-related pathology, but which are not detected well on gene array platforms and require more sensitive methods to measure mRNA levels in skin tissues. Comparison of our transcriptome with three other published lists of psoriasis genes showed apparent inconsistencies based on the number of overlapping genes. We extended the well-established approach of Gene Set Enrichment Analysis (GSEA) to compare a new study with these other published list of differentially expressed genes (DEG) in a more comprehensive manner. We applied our method to these three published psoriasis transcriptomes and found them to be in good agreement with our study.Due to wide variability in clinical protocols, platform and sample handling, and subtle disease-related signals, intersection of published DEG lists was unable to establish consensus between studies. In order to leverage the power of multiple transcriptomes reported by several laboratories using different patients and protocols, more sophisticated methods like the extension of GSEA presented here, should be used in order to overcome the shortcomings of overlapping individual DEG approach
Alefacept (anti-CD2) causes a selective reduction in circulating effector memory T cells (Tem) and relative preservation of central memory T cells (Tcm) in psoriasis
<p>Abstract</p> <p>Background</p> <p>Alefacept (anti-CD2) biological therapy selectively targets effector memory T cells (Tem) in psoriasis vulgaris, a model Type 1 autoimmune disease.</p> <p>Methods</p> <p>Circulating leukocytes were phenotyped in patients receiving alefacept for moderate to severe psoriasis.</p> <p>Results</p> <p>In all patients, this treatment caused a preferential decrease in effector memory T cells (CCR7<sup>- </sup>CD45RA<sup>-</sup>) (mean 63% reduction) for both CD4<sup>+ </sup>and CD8<sup>+ </sup>Tem, while central memory T cells (Tcm) (CCR7<sup>+</sup>CD45RA<sup>-</sup>) were less affected, and naïve T cells (CCR7<sup>+</sup>CD45RA<sup>+</sup>) were relatively spared. Circulating CD8<sup>+ </sup>effector T cells and Type 1 T cells (IFN-γ-producing) were also significantly reduced.</p> <p>Conclusion</p> <p>Alefacept causes a selective reduction in circulating effector memory T cells (Tem) and relative preservation of central memory T cells (Tcm) in psoriasis.</p
Eruptive papules during efalizumab (anti-CD11a) therapy of psoriasis vulgaris: a case series
BACKGROUND: Newer biological therapies for moderate-to-severe psoriasis are being used more frequently, but unexpected effects may occur. CASE PRESENTATIONS: We present a group of 15 patients who developed inflammatory papules while on efalizumab therapy (Raptiva, Genentech Inc, anti-CD11a). Immunohistochemistry showed that there were increased CD11b(+), CD11c(+ )and iNOS(+ )cells (myeloid leukocytes) in the papules, with relatively few CD3(+ )T cells. While efalizumab caused a decreased expression of CD11a on T cells, other circulating leukocytes from patients receiving this therapy often showed increased CD11b and CD11c. In the setting of an additional stimulus such as skin trauma, this may predispose to increased trafficking into the skin using these alternative β2 integrins. In addition, there may be impaired immune synapse formation, limiting the development of these lesions to small papules. There is little evidence for these papular lesions being "allergic" in nature as there are few eosinophils on biopsy, and they respond to minimal or no therapy even if efalizumab is continued. CONCLUSION: We hypothesize that these papules may represent a unique type of "mechanistic" inflammatory reaction, seen only in the context of drug-induced CD11a blockade, and not during the natural disease process
Innate immunity and microbial dysbiosis in hidradenitis suppurativa – vicious cycle of chronic inflammation
Hidradenitis Suppurativa (HS) is a chronic multifactorial inflammatory skin disease with incompletely understood mechanisms of disease pathology. HS is characterized by aberrant activation of the innate immune system, resulting in activation of pathways that aim to protect against pathogenic microorganisms, and also contribute to failure to resolve inflammation. Imbalance in innate immunity is evident in deregulation of host antimicrobial peptides (AMPs) and the complement system associated with the microbiome dysbiosis. The pathology is further complicated by ability of pathogens associated with HS to overcome host immune response. Potential roles of major AMPs, cathelicidin, defensins, dermcidin, S100 proteins, RNAse 7 and complement proteins are discussed. Dysregulated expression pattern of innate immunity components in conjunction with bacterial component of the disease warrants consideration of novel treatment approaches targeting both host immunity and pathogenic microbiome in HS
A Single Intradermal Injection of IFN-γ Induces an Inflammatory State in Both Non-Lesional Psoriatic and Healthy Skin
Psoriasis is a chronic, debilitating, immune-mediated inflammatory skin disease. As IFN-γ is involved in many cellular processes, including activation of dendritic cells (DCs), antigen processing and presentation, cell adhesion and trafficking, and cytokine and chemokine production, IFN-γ–producing Th1 cells were proposed to be integral to the pathogenesis of psoriasis. Recently, IFN-γ was shown to enhance IL-23 and IL-1 production by DCs and subsequently induce Th17 cells, which are important contributors to the inflammatory cascade in psoriatic lesions. To determine whether IFN-γ indeed induces the pathways expressed in psoriatic lesions, a single intradermal injection of IFN-γ was administered to an area of clinically normal, non-lesional (NL) skin of psoriasis patients and biopsies were collected 24 hours later. Although there were no visible changes in the skin, IFN-γ induced many molecular and histological features characteristic of psoriatic lesions. IFN-γ increased a number of differentially expressed genes in the skin, including many chemokines concomitant with an influx of T cells and inflammatory DCs. Furthermore, inflammatory DC products tumor necrosis factor (TNF), inducible nitric oxide synthase, IL-23, and TNF-related apoptosis-inducing ligand were present in IFN-γ–treated skin. Thus, IFN-γ, which is significantly elevated in NL skin compared with healthy skin, appears to be a key pathogenic cytokine that can induce many features of the inflammatory cascade of psoriasis
Post-Therapeutic Relapse of Psoriasis after CD11a Blockade Is Associated with T Cells and Inflammatory Myeloid DCs
To understand the development of new psoriasis lesions, we studied a group of moderate-to-severe psoriasis patients who experienced a relapse after ceasing efalizumab (anti-CD11a, Raptiva, Genentech). There were increased CD3+ T cells, neutrophils, CD11c+ and CD83+ myeloid dendritic cells (DCs), but no increase in CD1c+ resident myeloid DCs. In relapsed lesions, there were many CD11c+CD1c−, inflammatory myeloid DCs identified by TNFSF10/TRAIL, TNF, and iNOS. CD11c+ cells in relapsed lesions co-expressed CD14 and CD16 in situ. Efalizumab induced an improvement in many psoriasis genes, and during relapse, the majority of these genes reversed back to a lesional state. Gene Set Enrichment Analysis (GSEA) of the transcriptome of relapsed tissue showed that many of the gene sets known to be present in psoriasis were also highly enriched in relapse. Hence, on ceasing efalizumab, T cells and myeloid cells rapidly enter the skin to cause classic psoriasis
Role of the complement pathway in inflammatory skin diseases: a focus on hidradenitis suppurativa
Although the role of immune dysregulation in hidradenitis suppurativa (HS) has yet to be elucidated, recent studies identified several complement abnormalities in patients with HS. The complement system serves a critical role in the modulation of immune response and regulation of cutaneous commensal bacteria. Complement is implicated in several inflammatory skin diseases including systemic lupus erythematosus, angioedema, pemphigus, bullous pemphigoid, and HS. A model of HS pathogenesis is proposed, integrating the role of commensal bacteria, cutaneous immune responses, and complement dysregulation. The role of complement in disease pathogenesis has led to the development of novel anticomplement agents and clinical trials investigating the efficacy of such treatments in HS
- …