6,190 research outputs found

    Accurate effective pair potentials for polymer solutions

    Full text link
    Dilute or semi-dilute solutions of non-intersecting self-avoiding walk (SAW) polymer chains are mapped onto a fluid of ``soft'' particles interacting via an effective pair potential between their centers of mass. This mapping is achieved by inverting the pair distribution function of the centers of mass of the original polymer chains, using integral equation techniques from the theory of simple fluids. The resulting effective pair potential is finite at all distances, has a range of the order of the radius of gyration, and turns out to be only moderately concentration-dependent. The dependence of the effective potential on polymer length is analyzed in an effort to extract the scaling limit. The effective potential is used to derive the osmotic equation of state, which is compared to simulation data for the full SAW segment model, and to the predictions of renormalization group calculations. A similar inversion procedure is used to derive an effective wall-polymer potential from the center of mass density profiles near the wall, obtained from simulations of the full polymer segment model. The resulting wall-polymer potential turns out to depend strongly on bulk polymer concentration when polymer-polymer correlations are taken into account, leading to a considerable enhancement of the effective repulsion with increasing concentration. The effective polymer-polymer and wall-polymer potentials are combined to calculate the depletion interaction induced by SAW polymers between two walls. The calculated depletion interaction agrees well with the ``exact'' results from much more computer-intensive direct simulation of the full polymer-segment model, and clearly illustrates the inadequacy -- in the semi-dilute regime -- of the standard Asakura-Oosawa approximation based on the assumption of non-interacting polymer coils.Comment: 18 pages, 24 figures, ReVTeX, submitted to J. Chem. Phy

    Dispersion control for matter waves and gap solitons in optical superlattices

    Full text link
    We present a numerical study of dispersion manipulation and formation of matter-wave gap solitons in a Bose-Einstein condensate trapped in an optical superlattice. We demonstrate a method for controlled generation of matter-wave gap solitons in a stationary lattice by using an interference pattern of two condensate wavepackets, which mimics the structure of the gap soliton near the edge of a spectral band. The efficiency of this method is compared with that of gap soliton generation in a moving lattice recently demonstrated experimentally by Eiermann et al. [Phys. Rev. Lett. 92, 230401 (2004)]. We show that, by changing the relative depths of the superlattice wells, one can fine-tune the effective dispersion of the matter waves at the edges of the mini-gaps of the superlattice Bloch-wave spectrum and therefore effectively control both the peak density and the spatial width of the emerging gap solitons.Comment: 8 pages, 9 figures; modified references in Section 2; minor content changes in Sections 1 and 2 and Fig. 9 captio

    Rosenfeld functional for non-additive hard spheres

    Full text link
    The fundamental measure density functional theory for hard spheres is generalized to binary mixtures of arbitrary positive and moderate negative non-additivity between unlike components. In bulk the theory predicts fluid-fluid phase separation into phases with different chemical compositions. The location of the accompanying critical point agrees well with previous results from simulations over a broad range of non-additivities and both for symmetric and highly asymmetric size ratios. Results for partial pair correlation functions show good agreement with simulation data.Comment: 8 pages with 4 figure

    Low-temperature phonon thermal conductivity of cuprate single crystals

    Full text link
    The effect of sample size and surface roughness on the phonon thermal conductivity κp\kappa_p of Nd2_2CuO4_4 single crystals was studied down to 50 mK. At 0.5 K, κp\kappa_p is proportional to A\sqrt{A}, where AA is the cross-sectional area of the sample. This demonstrates that κp\kappa_p is dominated by boundary scattering below 0.5 K or so. However, the expected T3T^3 dependence of κp\kappa_p is not observed down to 50 mK. Upon roughing the surfaces, the T3T^3 dependence is restored, showing that departures from T3T^3 are due to specular reflection of phonons off the mirror-like sample surfaces. We propose an empirical power law fit, to κpTα\kappa_p \sim T^{\alpha} (where α<3\alpha < 3) in cuprate single crystals. Using this method, we show that recent thermal conductivity studies of Zn doping in YBa2_2Cu3_3Oy_y re-affirm the universal heat conductivity of d-wave quasiparticles at T0T \to 0.Comment: 4 pages, 4 figure

    Can Polymer Coils be modeled as "Soft Colloids"?

    Get PDF
    We map dilute or semi-dilute solutions of non-intersecting polymer chains onto a fluid of ``soft'' particles interacting via a concentration dependent effective pair potential, by inverting the pair distribution function of the centers of mass of the initial polymer chains. A similar inversion is used to derive an effective wall-polymer potential; these potentials are combined to successfully reproduce the calculated exact depletion interaction induced by non-intersecting polymers between two walls. The mapping opens up the possibility of large-scale simulations of polymer solutions in complex geometries.Comment: 4 pages, 3 figures ReVTeX[epsfig,multicol,amssymb] references update

    Sum of exit times in series of metastable states in probabilistic cellular automata

    Get PDF
    Reversible Probabilistic Cellular Automata are a special class of automata whose stationary behavior is described by Gibbs--like measures. For those models the dynamics can be trapped for a very long time in states which are very different from the ones typical of stationarity. This phenomenon can be recasted in the framework of metastability theory which is typical of Statistical Mechanics. In this paper we consider a model presenting two not degenerate in energy metastable states which form a series, in the sense that, when the dynamics is started at one of them, before reaching stationarity, the system must necessarily visit the second one. We discuss a rule for combining the exit times from each of the metastable states

    Thermal conductivity in the vicinity of the quantum critical endpoint in Sr3Ru2O7

    Get PDF
    Thermal conductivity of Sr3Ru2O7 was measured down to 40 mK and at magnetic fields through the quantum critical endpoint at H_c = 7.85 T. A peak in the electrical resistivity as a function of field was mimicked by the thermal resistivity. In the limit as T -> 0 K we find that the Wiedemann-Franz law is satisfied to within 5% at all fields, implying that there is no breakdown of the electron despite the destruction of the Fermi liquid state at quantum criticality. A significant change in disorder (from ρ0\rho_0(H=0T) = 2.1 μΩ\mu\Omega cm to 0.5 μΩ\mu\Omega cm) does not influence our conclusions. At finite temperatures, the temperature dependence of the Lorenz number is consistent with ferromagnetic fluctuations causing the non-Fermi liquid behavior as one would expect at a metamagnetic quantum critical endpoint.Comment: 4 figures, published in PR

    Universal Heat Conduction in YBa_2Cu_3O_6.9

    Full text link
    The thermal conductivity of YBa_2Cu_3O_6.9 was measured at low temperatures in untwinned single crystals with concentrations of Zn impurities from 0 to 3% of Cu. A linear term kappa_0/T = 0.19 mW/K^2.cm is clearly resolved as T -> 0, and found to be virtually independent of Zn concentration. The existence of this residual normal fluid strongly validates the basic theory of transport in unconventional superconductors. Moreover, the observed universal behavior is in quantitative agreement with calculations for a gap function of d-wave symmetry.Comment: Latex file, 4 pages, 3 EPS figures, to appear in Physical Review Letter

    Internal Anisotropy of Collision Cascades

    Full text link
    We investigate the internal anisotropy of collision cascades arising from the branching structure. We show that the global fractal dimension cannot give an adequate description of the geometrical structure of cascades because it is insensitive to the internal anisotropy. In order to give a more elaborate description we introduce an angular correlation function, which takes into account the direction of the local growth of the branches of the cascades. It is demonstrated that the angular correlation function gives a quantitative description of the directionality and the interrelation of branches. The power law decay of the angular correlation is evidenced and characterized by an exponent and an angular correlation length different from the radius of gyration. It is demonstrated that the overlapping of subcascades has a strong effect on the angular correlation.Comment: RevteX, 8 pages, 6 .eps figures include
    corecore