2 research outputs found

    LiFi Reception from Organic Photovoltaic Modules Subject to Additional DC Illuminations and Shading Effects

    No full text
    International audienceIn this paper, we study the performance of organic photovoltaic (OPV) modules as LiFi receivers in two specific configurations. The PV-based LiFi receiver is first exposed to an additional homogeneous light source with different intensity levels and then the influence of partial lighting is studied (shading effect). In both cases, we compare the sensibility and the cutoff frequency of LiFi transmission when the solar cell is operated either in short-circuit mode (i.e. when it is loaded with an active transimpedance amplifier) or in open circuit mode (i.e. when it is terminated with an high impedance passive load). While the OPV module performance decreases in open-circuit mode as a function of the DC illumination level, we observe an improvement of the cutoff frequency in short circuit mode. This result seems very promising for outdoor LiFi transmissions but also for indoor conditions where natural light can disturb LiFi communications. Theoretical explanations involving physical parameters for energy harvesting (carrier mobility, lumped series resistance) are proposed to justify the observed behaviors. Finally, experimental results of shaded solar cells are provided in the two operating modes (open-circuit and short-circuit). We show that sensibility and bandwidth of OPV modules strongly depend on both the shading configuration and the operating mode

    LiFi Reception from Organic Photovoltaic Modules Subject to Additional DC Illuminations and Shading Effects

    No full text
    International audienceIn this paper, we study the performance of organic photovoltaic (OPV) modules as LiFi receivers in two specific configurations. The PV-based LiFi receiver is first exposed to an additional homogeneous light source with different intensity levels and then the influence of partial lighting is studied (shading effect). In both cases, we compare the sensibility and the cutoff frequency of LiFi transmission when the solar cell is operated either in short-circuit mode (i.e. when it is loaded with an active transimpedance amplifier) or in open circuit mode (i.e. when it is terminated with an high impedance passive load). While the OPV module performance decreases in open-circuit mode as a function of the DC illumination level, we observe an improvement of the cutoff frequency in short circuit mode. This result seems very promising for outdoor LiFi transmissions but also for indoor conditions where natural light can disturb LiFi communications. Theoretical explanations involving physical parameters for energy harvesting (carrier mobility, lumped series resistance) are proposed to justify the observed behaviors. Finally, experimental results of shaded solar cells are provided in the two operating modes (open-circuit and short-circuit). We show that sensibility and bandwidth of OPV modules strongly depend on both the shading configuration and the operating mode
    corecore