20,652 research outputs found

    Statistics of the General Circulation from Cumulant Expansions

    Full text link
    Large-scale atmospheric flows may not be so nonlinear as to preclude their statistical description by systematic expansions in cumulants. I extend previous work by examining a two-layer baroclinic model of the general circulation. The fixed point of the cumulant expansion describes the statistically steady state of the out-of-equilibrium model. Equal-time statistics so obtained agree well with those accumulated by direct numerical simulation.Comment: 1 page paper with 4 figures that accompanies one of the winning entries in the APS gallery of nonlinear images competitio

    Get the gist? The effects of processing depth on false recognition in short-term and long-term memory

    Get PDF
    Gist-based processing has been proposed to account for robust false memories in the converging-associates task. The deep-encoding processes known to enhance verbatim memory also strengthen gist memory and increase distortions of long-term memory (LTM). Recent research has demonstrated that compelling false memory illusions are relatively delay-invariant, also occurring under canonical short-term memory (STM) conditions. To investigate the contributions of gist to false memory at short and long delays, processing depth was manipulated as participants encoded lists of four semantically related words and were probed immediately, following a filled 3- to 4-s retention interval, or approximately 20 min later, in a surprise recognition test. In two experiments, the encoding manipulation dissociated STM and LTM on the frequency, but not the phenomenology, of false memory. Deep encoding at STM increases false recognition rates at LTM, but confidence ratings and remember/know judgments are similar across delays and do not differ as a function of processing depth. These results suggest that some shared and some unique processes underlie false memory illusions at short and long delays

    Enhanced many-body effects in the excitation spectrum of a weakly-interacting rotating Bose-Einstein condensate

    Full text link
    The excitation spectrum of a highly-condensed two-dimensional trapped Bose-Einstein condensate (BEC) is investigated within the rotating frame of reference. The rotation is used to transfer high-lying excited states to the low-energy spectrum of the BEC. We employ many-body linear-response theory and show that, once the rotation leads to a quantized vortex in the ground state, already the low-energy part of the excitation spectrum shows substantial many-body effects beyond the realm of mean-field theory. We demonstrate numerically that the many-body effects grow with the vorticity of the ground state, meaning that the rotation enhances them even for very weak repulsion. Furthermore, we explore the impact of the number of bosons NN in the condensate on a low-lying single-particle excitation, which is describable within mean-field theory. Our analysis shows deviations between the many-body and mean-field results which clearly persist when NN is increased up to the experimentally relevant regime, typically ranging from several thousand up to a million bosons in size. Implications are briefly discussed

    A simple closure approximation for slow dynamics of a multiscale system: nonlinear and multiplicative coupling

    Full text link
    Multiscale dynamics are ubiquitous in applications of modern science. Because of time scale separation between relatively small set of slowly evolving variables and (typically) much larger set of rapidly changing variables, direct numerical simulations of such systems often require relatively small time discretization step to resolve fast dynamics, which, in turn, increases computational expense. As a result, it became a popular approach in applications to develop a closed approximate model for slow variables alone, which both effectively reduces the dimension of the phase space of dynamics, as well as allows for a longer time discretization step. In this work we develop a new method for approximate reduced model, based on the linear fluctuation-dissipation theorem applied to statistical states of the fast variables. The method is suitable for situations with quadratically nonlinear and multiplicative coupling. We show that, with complex quadratically nonlinear and multiplicative coupling in both slow and fast variables, this method produces comparable statistics to what is exhibited by an original multiscale model. In contrast, it is observed that the results from the simplified closed model with a constant coupling term parameterization are consistently less precise

    Stable Attracting Sets in Dynamical Systems and in Their One-Step Discretizations

    Get PDF
    We consider a dynamical system described by a system of ordinary differential equations which possesses a compact attracting set Λ of arbitrary shape. Under the assumption of uniform asymptotic stability of Λ in the sense of Lyapunov, we show that discretized versions of the dynamical system involving one-step numerical methods have nearby attracting sets Λ(h), which are also uniformly asymptotically stable. Our proof uses the properties of a Lyapunov function which characterizes the stability of Λ

    Zoo of quantum phases and excitations of cold bosonic atoms in optical lattices

    Full text link
    Quantum phases and phase transitions of weakly- to strongly-interacting bosonic atoms in deep to shallow optical lattices are described by a {\it single multi-orbital mean-field approach in real space}. For weakly-interacting bosons in 1D, the critical value of the superfluid to Mott insulator (MI) transition found is in excellent agreement with {\it many-body} treatments of the Bose-Hubbard model. For strongly-interacting bosons, (i) additional MI phases appear, for which two (or more) atoms residing in {\it each site} undergo a Tonks-Girardeau-like transition and localize and (ii) on-site excitation becomes the excitation lowest in energy. Experimental implications are discussed.Comment: 12 pages, 3 figure

    A conceptual design of an advanced 23 m diameter IACT of 50 tons for ground-based gamma-ray astronomy

    Full text link
    A conceptual design of an advanced Imaging Air Cherenkov Telescope with a 23 m diameter mirror and of 50 tons weight will be presented. A system photon detection efficiency of 15-17%, averaged over 300-600 nm, is aimed at to lower the threshold to 10-20 GeV. Prospects for a second generation camera with Geiger-mode Avalanche Photo Diodes will be discussed.Comment: 4 pages, 1 figure, to appear in the proceedings of the 31th International Cosmic Ray Conference, Lodz, Poland, 200

    Accurate multi-boson long-time dynamics in triple-well periodic traps

    Full text link
    To solve the many-boson Schr\"odinger equation we utilize the Multiconfigurational time-dependent Hartree method for bosons (MCTDHB). To be able to attack larger systems and/or to propagate the solution for longer times, we implement a parallel version of the MCTDHB method thereby realizing the recently proposed [Streltsov {\it et al.} arXiv:0910.2577v1] novel idea how to construct efficiently the result of the action of the Hamiltonian on a bosonic state vector. We study the real-space dynamics of repulsive bosonic systems made of N=12, 51 and 3003 bosons in triple-well periodic potentials. The ground state of this system is three-fold fragmented. By suddenly strongly distorting the trap potential, the system performs complex many-body quantum dynamics. At long times it reveals a tendency to an oscillatory behavior around a threefold fragmented state. These oscillations are strongly suppressed and damped by quantum depletions. In spite of the richness of the observed dynamics, the three time-adaptive orbitals of MCTDHB(M=3) are capable to describe the many-boson quantum dynamics of the system for short and intermediate times. For longer times, however, more self-consistent time-adaptive orbitals are needed to correctly describe the non-equilibrium many-body physics. The convergence of the MCTDHB(MM) method with the number MM of self-consistent time-dependent orbitals used is demonstrated.Comment: 37 pages, 7 figure
    corecore