17,257 research outputs found
Relationship between ferroelectricity and Dzyaloshinskii-Moriya interaction in multiferroics and the effect of bond-bending
We studied the microscopic mechanism of multiferroics, in particular with the
"spin current" model (Hosho Katsura, Naoto Nagaosa and Aleander V. Balatsky,
Phys. Rev. Lett. 95, 057205 (2005)). Starting from a system with helical spin
configuration, we solved for the forms of the electron wave functions and
analyzed their characteristics. The relation between ferroelectricity and
Dzyaloshinskii-Moriya interaction (I. Dzyaloshinskii, J. Phys. Chem. Solids 4,
241 (1958) and T. Moriya, Phys. Rev. 120, 91 (1960)) is clearly established.
There is also a simple relation between the electric polarization and the wave
vector of magnetic orders. Finally, we show that the bond-bending exists in
transition metal oxides can enhance ferroelectricity.Comment: 14 pages, 3 figures. acceptby Physical Review
Micellar Crystals in Solution from Molecular Dynamics Simulations
Polymers with both soluble and insoluble blocks typically self-assemble into
micelles, aggregates of a finite number of polymers where the soluble blocks
shield the insoluble ones from contact with the solvent. Upon increasing
concentration, these micelles often form gels that exhibit crystalline order in
many systems. In this paper, we present a study of both the dynamics and the
equilibrium properties of micellar crystals of triblock polymers using
molecular dynamics simulations. Our results show that equilibration of single
micelle degrees of freedom and crystal formation occurs by polymer transfer
between micelles, a process that is described by transition state theory. Near
the disorder (or melting) transition, bcc lattices are favored for all
triblocks studied. Lattices with fcc ordering are also found, but only at lower
kinetic temperatures and for triblocks with short hydrophilic blocks. Our
results lead to a number of theoretical considerations and suggest a range of
implications to experimental systems with a particular emphasis on Pluronic
polymers.Comment: 12 pages, 11 figures. Note that some figures are extremely low
quality to meet arXiv's file size limit
Similarity of percolation thresholds on the hcp and fcc lattices
Extensive Monte-Carlo simulations were performed in order to determine the
precise values of the critical thresholds for site () and bond ()
percolation on the hcp lattice to compare with previous precise measuremens on
the fcc lattice. Also, exact enumeration of the hcp and fcc lattices was
performed and yielded generating functions and series for the zeroth, first,
and second moments of both lattices. When these series and the values of
are compared to those for the fcc lattice, it is apparent that the site
percolation thresholds are different; however, the bond percolation thresholds
are equal within error bars, and the series only differ slightly in the higher
order terms, suggesting the actual values are very close to each other, if not
identical.Comment: 10 pages, 4 figures, submitted to J. Stat. Phy
Modelling a Bistable System Strongly Coupled to a Debye Bath: A Quasiclassical Approach Based on the Generalised Langevin Equation
Bistable systems present two degenerate metastable configurations separated
by an energy barrier. Thermal or quantum fluctuations can promote the
transition between the configurations at a rate which depends on the dynamical
properties of the local environment (i.e., a thermal bath). In the case of
classical systems, strong system-bath interaction has been successfully
modelled by the Generalised Langevin Equation (GLE) formalism. Here we show
that the efficient GLE algorithm introduced in Phys. Rev. B 89, 134303 (2014)
can be extended to include some crucial aspects of the quantum fluctuations. In
particular, the expected isotopic effect is observed along with the convergence
of the quantum and classical transition rates in the strong coupling limit.
Saturation of the transition rates at low temperature is also retrieved, in
qualitative, yet not quantitative, agreement with the analytic predictions. The
discrepancies in the tunnelling regime are due to an incorrect sampling close
to the barrier top. The domain of applicability of the quasiclassical GLE is
also discussed.Comment: 21 pages, 5 figures. Presented at the NESC16 conference: Advances in
theory and simulation of non-equilibrium system
Applications of the Generalised Langevin Equation: towards a realistic description of the baths
The Generalised Langevin Equation (GLE) method, as developed in Ref. [Phys.
Rev. B 89, 134303 (2014)], is used to calculate the dissipative dynamics of
systems described at the atomic level. The GLE scheme goes beyond the commonly
used bilinear coupling between the central system and the bath, and permits us
to have a realistic description of both the dissipative central system and its
surrounding bath. We show how to obtain the vibrational properties of a
realistic bath and how to convey such properties into an extended Langevin
dynamics by the use of the mapping of the bath vibrational properties onto a
set of auxiliary variables. Our calculations for a model of a Lennard-Jones
solid show that our GLE scheme provides a stable dynamics, with the
dissipative/relaxation processes properly described. The total kinetic energy
of the central system always thermalises toward the expected bath temperature,
with appropriate fluctuation around the mean value. More importantly, we obtain
a velocity distribution for the individual atoms in the central system which
follows the expected canonical distribution at the corresponding temperature.
This confirms that both our GLE scheme and our mapping procedure onto an
extended Langevin dynamics provide the correct thermostat. We also examined the
velocity autocorrelation functions and compare our results with more
conventional Langevin dynamics.Comment: accepted for publication in PR
Thermal expansion of the spin-1/2 Heisenberg-chain compound Cu(CHN)(NO)
Compounds containing magnetic subsystems representing simple model spin
systems with weak magnetic coupling constants are ideal candidates to test
theoretical predictions for the generic behavior close to quantum phase
transitions. We present measurements of the thermal expansion and
magnetostriction of the spin-1/2-chain compound copper pyrazine dinitrate
Cu(CHN)(NO). Of particular interest is the low-temperature
thermal expansion close to the saturation field ,
which defines a quantum phase transition from the gapless Luttinger liquid
state to the fully saturated state with a finite excitation gap. We observe a
sign change of the thermal expansion for the different ground states, and at
the quantum critical point the low-temperature expansion approaches a
divergence. Thus, our data agree very well with the expected
quantum critical behaviour.Comment: 4 pages, 3 figures; to appear in the proceedings of the ICM 09 held
in Karlsruhe, German
Effects of boundary conditions on the critical spanning probability
The fractions of samples spanning a lattice at its percolation threshold are
found by computer simulation of random site-percolation in two- and
three-dimensional hypercubic lattices using different boundary conditions. As a
byproduct we find in the cubic lattice.Comment: 8 pages Latex, To appear in Int. J. Mod. Phys.
Radiation Generated by Charge Migration Following Ionization
Electronic many-body effects alone can be the driving force for an ultrafast
migration of a positive charge created upon ionization of molecular systems.
Here we show that this purely electronic phenomenon generates a characteristic
IR radiation. The situation when the initial ionic wave packet is produced by a
sudden removal of an electron is also studied. It is shown that in this case a
much stronger UV emission is generated. This emission appears as an ultrafast
response of the remaining electrons to the perturbation caused by the sudden
ionization and as such is a universal phenomenon to be expected in every
multielectron system.Comment: 5 pages, 4 figure
- …