25 research outputs found
Lack of Association Between Genetic Variants at ACE2 and TMPRSS2 Genes Involved in SARS-CoV-2 Infection and Human Quantitative Phenotypes
Coronavirus disease 2019 (COVID-19) shows a wide variation in expression and severity of symptoms, from very mild or no symptoms, to flu-like symptoms, and in more severe cases, to pneumonia, acute respiratory distress syndrome, and even death. Large differences in outcome have also been observed between males and females. The causes for this variability are likely to be multifactorial, and to include genetics. The SARS-CoV-2 virus responsible for the infection depends on two human genes: the human receptor angiotensin converting enzyme 2 (ACE2) for cell invasion, and the serine protease TMPRSS2 for S protein priming. Genetic variation in these two genes may thus modulate an individual's genetic predisposition to infection and virus clearance. While genetic data on COVID-19 patients is being gathered, we carried out a phenome-wide association scan (PheWAS) to investigate the role of these genes in other human phenotypes in the general population. We examined 178 quantitative phenotypes including cytokines and cardio-metabolic biomarkers, as well as usage of 58 medications in 36,339 volunteers from the Lifelines population cohort, in relation to 1,273 genetic variants located in or near ACE2 and TMPRSS2. While none reached our threshold for significance, we observed several interesting suggestive associations. For example, single nucleotide polymorphisms (SNPs) near the TMPRSS2 genes were associated with thrombocytes count (p = 1.8 × 10−5). SNPs within the ACE2 gene were associated with (1) the use of angiotensin II receptor blockers (ARBs) combination therapies (p = 5.7 × 10−4), an association that is significantly stronger in females (pdiff = 0.01), and (2) with the use of non-steroid anti-inflammatory and antirheumatic products (p = 5.5 × 10−4). While these associations need to be confirmed in larger sample sizes, they suggest that these variants could play a role in diseases such as thrombocytopenia, hypertension, and chronic inflammation that are often observed in the more severe COVID-19 cases. Further investigation of these genetic variants in the context of COVID-19 is thus promising for better understanding of disease variability. Full results are available at https://covid19research.nl
Phenotypic and Genetic Factors Associated with Absence of Cardiomyopathy Symptoms in PLN:c.40_42delAGA Carriers
The c.40_42delAGA variant in the phospholamban gene (PLN) has been associated with dilated and arrhythmogenic cardiomyopathy, with up to 70% of carriers experiencing a major cardiac event by age 70. However, there are carriers who remain asymptomatic at older ages. To understand the mechanisms behind this incomplete penetrance, we evaluated potential phenotypic and genetic modifiers in 74 PLN:c.40_42delAGA carriers identified in 36,339 participants of the Lifelines population cohort. Asymptomatic carriers (N = 48) showed shorter QRS duration (− 5.73 ms, q value = 0.001) compared to asymptomatic non-carriers, an effect we could replicate in two different independent cohorts. Furthermore, symptomatic carriers showed a higher correlation (rPearson = 0.17) between polygenic predisposition to higher QRS (PGSQRS) and QRS (p value = 1.98 × 10–8), suggesting that the effect of the genetic variation on cardiac rhythm might be increased in symptomatic carriers. Our results allow for improved clinical interpretation for asymptomatic carriers, while our approach could guide future studies on genetic diseases with incomplete penetrance.</p
Phenotypic and Genetic Factors Associated with Absence of Cardiomyopathy Symptoms in PLN:c.40_42delAGA Carriers
The c.40_42delAGA variant in the phospholamban gene (PLN) has been associated with dilated and arrhythmogenic cardiomyopathy, with up to 70% of carriers experiencing a major cardiac event by age 70. However, there are carriers who remain asymptomatic at older ages. To understand the mechanisms behind this incomplete penetrance, we evaluated potential phenotypic and genetic modifiers in 74 PLN:c.40_42delAGA carriers identified in 36,339 participants of the Lifelines population cohort. Asymptomatic carriers (N = 48) showed shorter QRS duration (− 5.73 ms, q value = 0.001) compared to asymptomatic non-carriers, an effect we could replicate in two different independent cohorts. Furthermore, symptomatic carriers showed a higher correlation (r Pearson = 0.17) between polygenic predisposition to higher QRS (PGSQRS) and QRS (p value = 1.98 × 10–8), suggesting that the effect of the genetic variation on cardiac rhythm might be increased in symptomatic carriers. Our results allow for improved clinical interpretation for asymptomatic carriers, while our approach could guide future studies on genetic diseases with incomplete penetrance. Graphical abstract: [Figure not available: see fulltext.].</p
Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project
Host genetics are known to influence the gut microbiome, yet their role remains poorly understood. To robustly characterize these effects, we performed a genome-wide association study of 207 taxa and 205 pathways representing microbial composition and function in 7,738 participants of the Dutch Microbiome Project. Two robust, study-wide significant (P < 1.89 × 10-10) signals near the LCT and ABO genes were found to be associated with multiple microbial taxa and pathways and were replicated in two independent cohorts. The LCT locus associations seemed modulated by lactose intake, whereas those at ABO could be explained by participant secretor status determined by their FUT2 genotype. Twenty-two other loci showed suggestive evidence (P < 5 × 10-8) of association with microbial taxa and pathways. At a more lenient threshold, the number of loci we identified strongly correlated with trait heritability, suggesting that much larger sample sizes are needed to elucidate the remaining effects of host genetics on the gut microbiome
Novel Ancestry-Specific Primary Open-Angle Glaucoma Loci and Shared Biology With Vascular Mechanisms and Cell Proliferation
Primary open-angle glaucoma (POAG), a leading cause of irreversible blindness globally, shows disparity in prevalence and manifestations across ancestries. We perform meta-analysis across 15 biobanks (of the Global Biobank Meta-analysis Initiative) (n = 1,487,441: cases = 26,848) and merge with previous multi-ancestry studies, with the combined dataset representing the largest and most diverse POAG study to date (n = 1,478,037: cases = 46,325) and identify 17 novel significant loci, 5 of which were ancestry specific. Gene-enrichment and transcriptome-wide association analyses implicate vascular and cancer genes, a fifth of which are primary ciliary related. We perform an extensive statistical analysis of SIX6 and CDKN2B-AS1 loci in human GTEx data and across large electronic health records showing interaction between SIX6 gene and causal variants in the chr9p21.3 locus, with expression effect on CDKN2A/B. Our results suggest that some POAG risk variants may be ancestry specific, sex specific, or both, and support the contribution of genes involved in programmed cell death in POAG pathogenesis
Using symptom-based case predictions to identify host genetic factors that contribute to COVID-19 susceptibility
Epidemiological and genetic studies on COVID-19 are currently hindered by inconsistent and limited testing policies to confirm SARS-CoV-2 infection. Recently, it was shown that it is possible to predict COVID-19 cases using cross-sectional self-reported disease-related symptoms. Here, we demonstrate that this COVID-19 prediction model has reasonable and consistent performance across multiple independent cohorts and that our attempt to improve upon this model did not result in improved predictions. Using the existing COVID-19 prediction model, we then conducted a GWAS on the predicted phenotype using a total of 1,865 predicted cases and 29,174 controls. While we did not find any common, large-effect variants that reached genome-wide significance, we do observe suggestive genetic associations at two SNPs (rs11844522, p = 1.9x10-7; rs5798227, p = 2.2x10-7). Explorative analyses furthermore suggest that genetic variants associated with other viral infectious diseases do not overlap with COVID-19 susceptibility and that severity of COVID-19 may have a different genetic architecture compared to COVID-19 susceptibility. This study represents a first effort that uses a symptom-based predicted phenotype as a proxy for COVID-19 in our pursuit of understanding the genetic susceptibility of the disease. We conclude that the inclusion of symptom-based predicted cases could be a useful strategy in a scenario of limited testing, either during the current COVID-19 pandemic or any future viral outbreak
Global Biobank Meta-analysis Initiative:Powering genetic discovery across human disease
Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)—a collaborative network of 23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints. This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of human diseases and traits.</p
Lifelines COVID-19 cohort:investigating COVID-19 infection and its health and societal impacts in a Dutch population-based cohort
Purpose The Lifelines COVID-19 cohort was set up to assess the psychological and societal impacts of the COVID-19 pandemic and investigate potential risk factors for COVID-19 within the Lifelines prospective population cohort.Participants Participants were recruited from the 140 000 eligible participants of Lifelines and the Lifelines NEXT birth cohort, who are all residents of the three northern provinces of the Netherlands. Participants filled out detailed questionnaires about their physical and mental health and experiences on a weekly basis starting in late March 2020, and the cohort consists of everyone who filled in at least one questionnaire in the first 8 weeks of the project.Findings to date >71 000 unique participants responded to the questionnaires at least once during the first 8 weeks, with >22 000 participants responding to seven questionnaires. Compiled questionnaire results are continuously updated and shared with the public through the Corona Barometer website. Early results included a clear signal that younger people living alone were experiencing greater levels of loneliness due to lockdown, and subsequent results showed the easing of anxiety as lockdown was eased in June 2020.Future plans Questionnaires were sent on a (bi)weekly basis starting in March 2020 and on a monthly basis starting July 2020, with plans for new questionnaire rounds to continue through 2020 and early 2021. Questionnaire frequency can be increased again for subsequent waves of infections. Cohort data will be used to address how the COVID-19 pandemic developed in the northern provinces of the Netherlands, which environmental and genetic risk factors predict disease susceptibility and severity and the psychological and societal impacts of the crisis. Cohort data are linked to the extensive health, lifestyle and sociodemographic data held for these participants by Lifelines, a 30-year project that started in 2006, and to data about participants held in national databases