56 research outputs found

    Spectral and transport properties of doped Mott-Hubbard systems with incommensurate magnetic order

    Full text link
    We present spectral and optical properties of the Hubbard model on a two-dimensional square lattice using a generalization of dynamical mean-field theory to magnetic states in finite dimension. The self-energy includes the effect of spin fluctuations and screening of the Coulomb interaction due to particle-particle scattering. At half-filling the quasiparticles reduce the width of the Mott-Hubbard `gap' and have dispersions and spectral weights that agree remarkably well with quantum Monte Carlo and exact diagonalization calculations. Away from half-filling we consider incommensurate magnetic order with a varying local spin direction, and derive the photoemission and optical spectra. The incommensurate magnetic order leads to a pseudogap which opens at the Fermi energy and coexists with a large Mott-Hubbard gap. The quasiparticle states survive in the doped systems, but their dispersion is modified with the doping and a rigid band picture does not apply. Spectral weight in the optical conductivity is transferred to lower energies and the Drude weight increases linearly with increasing doping. We show that incommensurate magnetic order leads also to mid-gap states in the optical spectra and to decreased scattering rates in the transport processes, in qualitative agreement with the experimental observations in doped systems. The gradual disappearence of the spiral magnetic order and the vanishing pseudogap with increasing temperature is found to be responsible for the linear resistivity. We discuss the possible reasons why these results may only partially explain the features observed in the optical spectra of high temperature superconductors.Comment: 22 pages, 18 figure

    Hamiltonian dynamics and Noether symmetries in Extended Gravity Cosmology

    Full text link
    We discuss the Hamiltonian dynamics for cosmologies coming from Extended Theories of Gravity. In particular, minisuperspace models are taken into account searching for Noether symmetries. The existence of conserved quantities gives selection rule to recover classical behaviors in cosmic evolution according to the so called Hartle criterion, that allows to select correlated regions in the configuration space of dynamical variables. We show that such a statement works for general classes of Extended Theories of Gravity and is conformally preserved. Furthermore, the presence of Noether symmetries allows a straightforward classification of singularities that represent the points where the symmetry is broken. Examples of nonminimally coupled and higher-order models are discussed.Comment: 20 pages, Review paper to appear in EPJ

    Prediction of Prostate Cancer Biochemical and Clinical Recurrence Is Improved by IHC-Assisted Grading Using Appl1, Sortilin and Syndecan-1.

    Get PDF
    Gleason scoring is used within a five-tier risk stratification system to guide therapeutic decisions for patients with prostate cancer. This study aimed to compare the predictive performance of routine H&E or biomarker-assisted ISUP (International Society of Urological Pathology) grade grouping for assessing the risk of biochemical recurrence (BCR) and clinical recurrence (CR) in patients with prostate cancer. This retrospective study was an assessment of 114 men with prostate cancer who provided radical prostatectomy samples to the Australian Prostate Cancer Bioresource between 2006 and 2014. The prediction of CR was the primary outcome (median time to CR 79.8 months), and BCR was assessed as a secondary outcome (median time to BCR 41.7 months). The associations of (1) H&E ISUP grade groups and (2) modified ISUP grade groups informed by the Appl1, Sortilin and Syndecan-1 immunohistochemistry (IHC) labelling were modelled with BCR and CR using Cox proportional hazard approaches. IHC-assisted grading was more predictive than H&E for BCR (C-statistic 0.63 vs. 0.59) and CR (C-statistic 0.71 vs. 0.66). On adjusted analysis, IHC-assisted ISUP grading was independently associated with both outcome measures. IHC-assisted ISUP grading using the biomarker panel was an independent predictor of individual BCR and CR. Prospective studies are needed to further validate this biomarker technology and to define BCR and CR associations in real-world cohorts.Jessica M. Logan ... Lisa M. Butler ... Douglas A. Brooks ... et al

    The structure of design problems

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D91109 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Parameterised Resource-Bounded ATL

    No full text
    It is often advantageous to be able to extract resource requirements in resource logics of strategic ability, rather than to verify whether a fixed resource requirement is sufficient for achieving a goal. We study Parameterised Resource-Bounded Alternating Time Temporal Logic where parameter extraction is possible. We give a parameter extraction algorithm and prove that the model-checking problem is 2EXPTIME-complete

    Parameterised Resource-Bounded ATL

    No full text
    It is often advantageous to be able to extract resource requirements in resource logics of strategic ability, rather than to verify whether a fixed resource requirement is sufficient for achieving a goal. We study Parameterised Resource-Bounded Alternating Time Temporal Logic where parameter extraction is possible. We give a parameter extraction algorithm and prove that the model-checking problem is 2EXPTIME-complete

    Revision Subpectoral Biceps Tenodesis Demonstrates a High Patient Satisfaction and Good Functional Outcomes

    No full text
    Purpose: To clinically evaluate a subset of patients who underwent a revision subpectoral biceps tenodesis for a clinically failed proximal biceps tenodesis. Methods: This is a retrospective case series of patients with at least 2-year follow-up who had undergone a revision biceps tenodesis after clinical failure of a proximal biceps tenodesis between January 2008 and February 2020 by a single surgeon. Patients who underwent concomitant procedures, such as revision cuff repair, were excluded. Patients with a minimum of 2 years duration status postrevision subpectoral tenodesis were contacted for informed consent and outcome data, which included Simple Shoulder Test, American Shoulder and Elbow Surgeons score, visual analog scale for pain, and subjective reporting of arm weakness and satisfaction. Results: Fourteen patients were initially identified as meeting inclusion criteria with a minimum 2-year follow-up achieved for 11 of 14 patients (78.5% follow-up). The mean follow-up time was 8.1 years (range, 2.7-14.8 years). After the primary biceps tenodesis, a mean of 8.0 ± 9.6 months passed before the revision subpectoral biceps tenodesis was performed. The average postoperative active forward elevation and adducted external rotation were 159 ± 7° and 47 ± 17°, respectively. The mean ± standard deviation (range) follow-up American Shoulder and Elbow Surgeons score was 79 ± 23 (30-100), Simple Shoulder Test was 11 ± 2 (7-12), and visual analog scale for pain was 2.6 ± 2.8 (0-9). All 11 patients reported being satisfied with their operation and would elect to have the operation again. Conclusions: Revision subpectoral biceps tenodesis is a viable procedure for addressing patients with persistent pain following initial proximal biceps tenodesis. Although some persistent pain is common, revision subpectoral biceps tenodesis demonstrates a high patient satisfaction and good functional outcomes. Level of Evidence: Level IV, therapeutic case series

    Agent programming in the cognitive era

    Get PDF
    It is claimed that, in the nascent ‘Cognitive Era’, intelligent systems will be trained using machine learning techniques rather than programmed by software developers. A contrary point of view argues that machine learning has limitations, and, taken in isolation, cannot form the basis of autonomous systems capable of intelligent behaviour in complex environments. In this paper, we explore the contributions that agent-oriented programming can make to the development of future intelligent systems. We briefly review the state of the art in agent programming, focussing particularly on BDI-based agent programming languages, and discuss previous work on integrating AI techniques (including machine learning) in agent-oriented programming. We argue that the unique strengths of BDI agent languages provide an ideal framework for integrating the wide range of AI capabilities necessary for progress towards the next-generation of intelligent systems. We identify a range of possible approaches to integrating AI into a BDI agent architecture. Some of these approaches, e.g., ‘AI as a service’, exploit immediate synergies between rapidly maturing AI techniques and agent programming, while others, e.g., ‘AI embedded into agents’ raise more fundamental research questions, and we sketch a programme of research directed towards identifying the most appropriate ways of integrating AI capabilities into agent programs
    corecore