12,006 research outputs found

    Does Politics Matter in the Conduct of Fiscal Policy? Political Determinants of the Fiscal Sustainability: Evidence from Seven Individual Central and Eastern European Countries (CEEC)

    Get PDF
    This paper aims at assessing the fiscal sustainability and its political determinants in seven Central and Eastern European Countries (CEEC), namely Estonia, Latvia, Lithuania, Poland, Slovenia, Slovakia and the Czech Republic. First, using the recent sustainability approach of Bohn (1998) based on fiscal reaction function, econometric findings using Ordinary Least Squares (OLS) reveal a positive response of the primary surplus to changes in debt in several countries. In other words, fiscal policy is sustainable in Baltic countries, Slovenia and Slovakia, but not in Poland and in the Czech Republic. Second, by introducing political dummy variables, we test the electoral budget cycle and the partisan cycle theories. We find the presence of electoral and partisan cycle in Poland but not in the rest of our countries.Fiscal reaction function, Public debt sustainability, Political budget cycles, Time series

    Cache-Aided Coded Multicast for Correlated Sources

    Full text link
    The combination of edge caching and coded multicasting is a promising approach to improve the efficiency of content delivery over cache-aided networks. The global caching gain resulting from content overlap distributed across the network in current solutions is limited due to the increasingly personalized nature of the content consumed by users. In this paper, the cache-aided coded multicast problem is generalized to account for the correlation among the network content by formulating a source compression problem with distributed side information. A correlation-aware achievable scheme is proposed and an upper bound on its performance is derived. It is shown that considerable load reductions can be achieved, compared to state of the art correlation-unaware schemes, when caching and delivery phases specifically account for the correlation among the content files.Comment: In proceeding of IEEE International Symposium on Turbo Codes and Iterative Information Processing (ISTC), 201

    Distortion-Memory Tradeoffs in Cache-Aided Wireless Video Delivery

    Full text link
    Mobile network operators are considering caching as one of the strategies to keep up with the increasing demand for high-definition wireless video streaming. By prefetching popular content into memory at wireless access points or end user devices, requests can be served locally, relieving strain on expensive backhaul. In addition, using network coding allows the simultaneous serving of distinct cache misses via common coded multicast transmissions, resulting in significantly larger load reductions compared to those achieved with conventional delivery schemes. However, prior work does not exploit the properties of video and simply treats content as fixed-size files that users would like to fully download. Our work is motivated by the fact that video can be coded in a scalable fashion and that the decoded video quality depends on the number of layers a user is able to receive. Using a Gaussian source model, caching and coded delivery methods are designed to minimize the squared error distortion at end user devices. Our work is general enough to consider heterogeneous cache sizes and video popularity distributions.Comment: To appear in Allerton 2015 Proceedings of the 53rd annual Allerton conference on Communication, control, and computin

    Correlation-Aware Distributed Caching and Coded Delivery

    Full text link
    Cache-aided coded multicast leverages side information at wireless edge caches to efficiently serve multiple groupcast demands via common multicast transmissions, leading to load reductions that are proportional to the aggregate cache size. However, the increasingly unpredictable and personalized nature of the content that users consume challenges the efficiency of existing caching-based solutions in which only exact content reuse is explored. This paper generalizes the cache-aided coded multicast problem to a source compression with distributed side information problem that specifically accounts for the correlation among the content files. It is shown how joint file compression during the caching and delivery phases can provide load reductions that go beyond those achieved with existing schemes. This is accomplished through a lower bound on the fundamental rate-memory trade-off as well as a correlation-aware achievable scheme, shown to significantly outperform state-of-the-art correlation-unaware solutions, while approaching the limiting rate-memory trade-off.Comment: In proceeding of IEEE Information Theory Workshop (ITW), 201

    The approximate f-core and the utopia payoff for infinite assignment games

    Get PDF
    Assignment problems where both sets of agents are countably infinite, the so-called infinite assignment problems, are studied as well as the related assignment games. Further, two solutions for these games are studied. The first one is the approximate f-core for games with a finite value. This particular solution takes into account that due to organisational limitations only finite groups of agents can protest against proposals of profit distributions. Second, we study the utopia payoff, the perfect proposal in which each agent receives the maximal amount he can get. \u

    Caching and Coded Multicasting: Multiple Groupcast Index Coding

    Full text link
    The capacity of caching networks has received considerable attention in the past few years. A particularly studied setting is the case of a single server (e.g., a base station) and multiple users, each of which caches segments of files in a finite library. Each user requests one (whole) file in the library and the server sends a common coded multicast message to satisfy all users at once. The problem consists of finding the smallest possible codeword length to satisfy such requests. In this paper we consider the generalization to the case where each user places L1L \geq 1 requests. The obvious naive scheme consists of applying LL times the order-optimal scheme for a single request, obtaining a linear in LL scaling of the multicast codeword length. We propose a new achievable scheme based on multiple groupcast index coding that achieves a significant gain over the naive scheme. Furthermore, through an information theoretic converse we find that the proposed scheme is approximately optimal within a constant factor of (at most) 1818.Comment: 5 pages, 1 figure, to appear in GlobalSIP14, Dec. 201
    corecore