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Recently it is proved that all infinite assignment games have a non-empty core. Using
this fact, and a technique suggested by L. S. Shapley for finite permutation games, we
prove similar results for infinite permutation games. Infinite transportation games can
be interpreted as a generalization of infinite assignment games. We show that infinite
transportation games are balanced via a related assignment game. By using certain core
elements of infinite transportation games it can be shown that infinite pooling games
have a non-empty core.

Keywords: Cooperative games; infinite programs; core.

AMS Classification: 90C08, 91A12

1. Introduction

Pooling and permutation situations can be seen as special types of one-sided market
models. They are related to transportation and assignment problems, respectively,
which can be interpreted as two-sided market models.

∗Corresponding author.
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An assignment situation is a problem in which agents of two types have to be
matched to each other. Shapley and Shubik (1972) introduced cooperative assign-
ment games when both sets of agents are finite and they proved that these games
have a non-empty core. Llorca et al. (2004) consider cooperative games related to
infinite assignment situations, where there are a countably infinite number of agents
of each type, and show that there exist core elements.

In a permutation situation with n agents, each player has a job and owns one
machine. They can process their jobs on their own machines, or they can cooperate
rearranging the jobs and machines to reduce the total costs. The second situation
can be described by a cooperative game with transferable utility (TUgame). The
class of finite permutation games, introduced by Tijs et al. (1984) as cost games,
has been shown in several ways to be balanced. In Tijs et al. (1984) the result
is obtained through a theorem due to Birkhoff (1946) and von Neumann (1953)
on double stochastic matrices. The proof given by Curiel and Tijs (1985) is based
on a result of Gale (1984) about the existence of equilibrium in discrete exchange
economies with money. In Klijn et al. (2000) an alternative proof of balancedness
of finite permutation games is provided relating the core conditions with the prop-
erties of envy-freeness and Pareto efficiency. As Tijs et al. (1984) point out, it is
also possible to show balancedness exploiting a connection, suggested in 1984 by
Shapley in a personal communication, between permutation and assignment games.
Quint (1996) shows that all core allocations of a finite permutation game can be
obtained in this way.

A transportation problem describes a situation in which demands at several
locations for a certain good have to be covered by supplies from other points. The
transport of one unit of the good from a supply point to a demand point generates
a nonnegative profit. The goal of the suppliers and demanders is to maximize the
total profit from transport. The corresponding transportation games can be seen
as an extension of assignment games. In Sánchez-Soriano et al. (2001b) it is shown
that finite transportation games are balanced.

A pooling situation appears when a set of agents which own property rights of
several interchangeable commodities decide to cooperate by pooling their property
rights in order to achieve as much profit as possible. Potters and Tijs (1987) intro-
duce two types of pooling games arising from pooling situations and prove that both
games have non-empty core. It can be shown that the second class of pooling games
and transportation games, as defined in Sánchez-Soriano et al. (2001b), coincide.

In the next section the relations between assignment and permutation situations
are analyzed, and related infinite permutation games are shown to be balanced. In
Sec. 3 we study infinite transportation situations and find core elements for the
corresponding cooperative TU games. Section 4 is devoted to pooling situations
when the number of agents is countable infinite, and it is proved that the core is
non-empty. Until this point we have only considered games with a finite value, in
order to take into account the possibility of infinite value some comments are given
in Sec. 5.
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2. Balancedness of Infinite Permutation Games

We start by shortly recalling the finite case. Consider a situation where there are
N = {1, . . . , n} agents, each agent i ∈ N has one job to be processed and one
machine to process a job. The machines cannot process more than one job and all
jobs have to be done. The value of player i to process his job on the machine owned
by agent π(i) is the nonnegative reward aiπ(i), where π : N → N is a permutation in
the set of all N−permutations, ΠN . Thus a permutation situation can be described
by the pair (N,A) where A is the nonnegative reward matrix, A = [aiπ(i)]i∈N .

From this situation Tijs et al. (1984) introduce a cooperative TU game with player
set N = {1, . . . , n} and for each non-empty coalition S ⊂ N the worth, vP (S), is
defined by

vP (S) = max
π∈ΠS

∑
i∈S

aiπ(i)

where ΠS is the class of all N−permutations with π(i) = i for all i outside S. The
game (N, vP ) is a so-called finite permutation game.

Now we take into account a situation in which there are two types of agents,
for example, the owners of the machines (the suppliers, since they can provide a
service) and those who have to process jobs on these machines (the demanders, as
they have needs to be covered). Denote by M and W these two finite and disjoint
sets. When agent i ∈ M is matched to agent j ∈ W this gives a nonnegative
profit of aij . This assignment situation can be represented by (M, W,A). In 1972,
Shapley and Shubik (1972) introduced cooperative assignment games associated to
the matching in which each agent i ∈ M is coupled to at most one agent j ∈ W and
vice versa. The corresponding assignment game (M ∪ W, vA) is a TU game with
player set M ∪ W. The worth, vA(S), for a coalition S ⊂ N is the maximal value
that it can obtain by matching its members if S∩M �= ∅ and S ∩W �= ∅, otherwise
vA(S) = 0. The maximal total value of paired agents in S, can be determined by
the following integer program

max
∑

i∈M∩S

∑
j∈W∩S

aijxij

s.t. :
∑

i∈M∩S

xij ≤ 1, for all j ∈ W ∩ S

∑
j∈W∩S

xij ≤ 1, for all i ∈ M ∩ S

xij ∈ {0, 1}, for all i ∈ M ∩ S, j ∈ W ∩ S.

(1)

with value vA(S).
In cooperative game theory we are interested to know how to share the joint

profit among the cooperating agents. The core of an assignment game, C(vA), is
the set of distributions of vA(N) upon which each coalition S will receive at least
as much it can obtain on its own. In assignment games core elements are easy to
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find because C(vA) equals the set of optimal solutions of the dual of problem (1),
relaxing the integer conditions by nonnegativity.

Curiel (1997) explores the relationship between assignment and permutation
games, showing that every assignment game is a permutation game. It is also pos-
sible, as Shapley suggested, to find an assignment game related to a given permu-
tation game. The procedure indicated by Shapley goes as follows. Let (N, vP ) be a
permutation game with reward matrix A = [aij ]i∈N,j∈N . Consider the assignment
game (M ∪ W, vAP ) obtained by duplicating the agents in two sets: the owners of
the machines, M , and the owners of the jobs, W. For all group of players S, it is
easy to check that its worth in the permutation game can be obtained from this
assignment game vP (S) = vAP (MS ∪ WS), where MS = M ∩ S and WS = W ∩ S.

Now we introduce infinite permutation situations (N,A) where there is a count-
able infinite number of agents and, therefore, an infinite number of jobs and
machines. The corresponding infinite permutation game (N, vP ) is a cooperative
TU game with a countably infinite set of players. As in the finite case, given
an infinite permutation situation and its corresponding game we can introduce
a related infinite assignment game (M ∪W, vAP ), with M = W = N and vP (S) =
vAP (MS ∪WS).

In assignment situations we are interested in how to match, e.g., a set of supply
points to a set of demand points such that we obtain the maximal total profit
when each supply point is assigned to at most one demand point and vice versa.
Consider a problem with an infinite number of production techniques that can be
programmed to produce a certain product which can be chosen from an infinite
number of possible designs. The marketing policy leads to produce unique pieces.
This is an assignment situation in which there is an infinite number of production
techniques (suppliers) and an infinite number of patterns (demanders). The goal
is to achieve the maximal total reward from matching the techniques with the
patterns. Infinite assignment situations and related games are introduced in Llorca
et al. (2004). They prove that, in case the value for the grand coalition N is finite
and in case it is infinite, these games are balanced. Using the result for assignment
games, we will show the non-emptiness of the core of infinite permutation games.
We describe the procedure through an example based on Llorca et al. (2004).

Example 1. Let (N,A) be the infinite permutation situation with a countable
infinite number of agents, each of whom can provide a service and at the same time
needs to be served. The nonnegative reward matrix

A =




1 1 1 1 . . .

1 1
2

1
2

1
2 . . .

1 1
2

1
4

1
4 . . .

1 1
2

1
4

1
8 . . .

...
...

...
...

. . .
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contains the profits aij when agent i is served by j. Let (N, vP ) be the corresponding
infinite permutation game. We can consider each agent in N as a supplier and as
well as a demander. Thus we can separate all players in two parts and construct a
related infinite assignment game (M ∪ W, vAP ) where M = W = N. The element
(u;w)=(1, 1

2 , 1
4 , . . . ; 1, 1

2 , 1
4 , . . .), belongs to

C(vAP ) =


(u;w) ∈ R

M × R
W

∣∣∣∣∣∣∣∣

∑
i∈M ui +

∑
i∈W wi = vAP (M ∪ W ) and∑

i∈MS
ui +

∑
i∈WS

wi ≥ vAP (S)

for all S ⊂ M ∪ W, S �= ∅




i.e. the core of this infinite assignment game. Since we have split into two parts
each agent in the original permutation situation, if we define xi = ui + wi, for all
i ∈ N, we obtain x =(2, 1, 1

2 , . . .) an element of the core in the infinite permutation
game, as the next theorem states.

Theorem 2. Let (N,A) be an infinite permutation situation, with (N, vP ) and
(N ∪ N, vAP ) the corresponding infinite permutation game and the related assign-
ment game, respectively. Then C(vP ) �= ∅.

Proof. According to Theorem 4.1 in Llorca et al. (2004) there exists (u;w) ∈
C(vAP ). Define xi = ui + wi, for all i ∈ N, then∑

i∈N

xi =
∑
i∈N

ui +
∑
i∈N

wi = vAP (N ∪ N) = vP (N),

and ∑
i∈S

xi =
∑
i∈S

(ui + wi) =
∑
i∈S

ui +
∑
i∈S

wi ≥ vAP (MS ∪ WS) = vP (S),

for all S ⊂ N where the inequality holds because (u;w) is in the core of the infinite
assignment game.

3. Owen Vectors for Infinite Transportation Games

A transportation situation describes a problem in which demands at different loca-
tions for a certain commodity want to be covered by supplies from other points.
The transport of one item of the indivisible good from a supply location i to a
demand point j generates a nonnegative profit of tij . The goal of the suppliers, P ,
and demanders, Q, is to obtain the maximal profit (if it exists), transporting from
origins to destinations as much as possible, with the constraints on supplies and
demands. A transportation situation can be represented by (P, Q,T, s,d) where
s = (si)i∈P and d = (dj)j∈Q are the supply and demand positive integer vectors,
respectively. Infinite transportation situations arise when the number of the two
types of agents (demanders and suppliers) is countably infinite. Infinite assignment
situations can be seen as a special case of infinite transportation situations when
all supplies and demands are 1.
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Related to such an infinite transportation situation of an indivisible good we
define an infinite transportation game (N, vT ) with player set N = P ∪ Q where
P = Q = N. As in assignment games, the worth of coalition S equals zero if
S ∩P = ∅ or S ∩Q = ∅, and the maximal total value of transport among agents in
S can be determined by the program

sup
∑

i∈P∩S

∑
j∈Q∩S

tijxij

s.t. :
∑

j∈Q∩S

xij ≤ si, for all i ∈ P ∩ S

∑
i∈P∩S

xij ≤ dj , for all j ∈ Q ∩ S

xij ∈ Z+, for all i ∈ P ∩ S, j ∈ Q ∩ S.

(2)

with value vT (S), otherwise.
Given an infinite transportation situation, (P, Q,T, s,d), we can construct a

related infinite assignment situation splitting each supply agent i ∈ P into si supply
points (with 1 unit of supply), each demand point j ∈ Q is divided into dj different
players (with demand 1 item), and the per unit profit for all these agents is tij .
Formally, the related assignment situation (M, W,A) has a countably infinite set of
supply points M = {ir | i ∈ P, r ∈ {1, . . . , si}}, a countably infinite set of demanders
W = {jc | j ∈ Q, c ∈ {1, . . . , dj}}, and air, jc = tij for all ir ∈ M, jc ∈ W .

The following result states that each solution for the transportation situation
determines a solution for the assignment one (and vice versa) by splitting (merging)
the corresponding agents and both solutions have the same value. This lemma is
given without proof because it resembles that in Sánchez-Soriano et al. (2001a),
Lemma 4.1.

Lemma 3. Let (P, Q,T, s,d) be an infinite transportation situation, with
(N ∪ N, vT ) and (N ∪ N, vAT ) the corresponding infinite transportation game and
the related assignment game, respectively. Then, for all S,

vT (S) = vAT (SAT )

where SAT = {ir|i ∈ P ∩ S, r ∈ {1, . . . , si}} ∪ {jc|j ∈ Q ∩ S, c ∈ {1, . . . , dj}}.
This result also allows us to replace the integer condition by the nonnegativity

condition in (2) because it holds for assignment problems. Thus the program

inf
∑
i∈P

siui +
∑
j∈Q

djwj

s.t. ui + wj ≥ tij

ui, wj ≥ 0, for all i ∈ P, j ∈ Q

(3)

with value vT
d (N), is the corresponding dual problem for the grand coalition N =

N ∪ N, and OT
d (N) denotes the set of its optimal solutions. An infinite number
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of variables and constrains are present in programs (2) and (3) so a duality gap
between their values may arise. The next proposition establishes that in infinite
transportation games there is no duality gap and there exist optimal dual solutions.
Although it is only shown for the grand coalition this holds for all S ⊂ N.

Proposition 4. Let (P, Q,T, s,d) be an infinite transportation situation, and
(N ∪ N, vT ) the corresponding infinite transportation game. Then

vT (N) = vT
d (N) and Od(N) �= ∅.

Proof. Theorem 4.1 in Llorca et al. (2004) states that the core of infinite assign-
ment games is always non-empty. So, let (u;w) ∈ C(vAT ). Then, uir + wjc ≥ tij
for all ir ∈ M , jc ∈ W . Therefore,

si∑
r=1

dj∑
c=1

(uir + wjc) = dj

si∑
r=1

uir + si

dj∑
c=1

wjc ≥
si∑

r=1

dj∑
c=1

tij = sidjtij ,

for all i ∈ P , j ∈ Q. Then dividing by sidj one obtains that

si∑
r=1

uir/si +
dj∑

c=1

wjc/dj ≥ tij .

Define ūi :=
∑si

r=1 uir/si and wj :=
∑dj

c=1 wjc/dj , which can be interpreted as
average prices. Then ūi ≥ 0, wj ≥ 0, and ūi + wj ≥ tij for all i ∈ P , j ∈ Q. Hence,

vT (N) = vAT (NAT ) = vAT
d (NAT ) =

∑
i∈P

siūi +
∑
j∈Q

djwj ≥ vT
d (N)

where the first equality follows from Lemma 3, the second one from the absence
of duality gap in infinite assignment problems, the third one because (u;w) is an
optimal solution of the dual assignment problem for the grand coalition, and the
inequality follows because (u;w) is a feasible dual solution in the transportation
situation. According to Theorem 3.1 in Anderson and Nash (1987) we know that
weak duality holds and therefore

vT (N) =
∑
i∈P

siūi +
∑
j∈Q

djwj = vT
d (N).

So we can conclude that there is no duality gap and (ū,w) is a dual optimal solution
in the transportation situation for the grand coalition.

An element of the so-called Owen set,

Owen(P, Q,T, s,d) =
{
z ∈ R

N

∣∣∣∣ ∃(u;w) ∈ OT
d (N) such that zk = skuk if k ∈ P

and zk = dkwk if k ∈ Q

}
,

turns out to be an element of the core of the infinite transportation game, as the
next theorem states.
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Theorem 5. Let (P, Q,T, s,d) be an infinite transportation situation and
(N ∪ N, vT ) be the corresponding infinite transportation game. Then

C(vT ) ⊃ Owen(P, Q,T, s,d) �= ∅.

Proof. Let z ∈ Owen(P, Q,T, s,d), which is always non-empty because OT
d (N) �= ∅,

and let (u;w) ∈ OT
d (N) be such that zk = skuk if k ∈ P and zk = dkwk if k ∈ Q.

Then ∑
k∈N

zk =
∑
i∈P

siui +
∑
j∈Q

djwj = vT
d (N) = vT (N),

where the last equality follows from the no gap result in Proposition 4.
Take a coalition S ⊂ N , S �= ∅. If S ⊂ P or S ⊂ Q then

∑
k∈S zk ≥ 0 = vT (S)

because zk ≥ 0 for all k ∈ N . When S ∩ P �= ∅ and S ∩ Q �= ∅, we have that
ui + wj ≥ tij for all i ∈ P , j ∈ Q, and this is in particular true for all i ∈ S ∩ P ,
j ∈ S ∩ Q. Therefore stability∑

k∈S

zk =
∑

i∈S∩P

siui +
∑

j∈S∩Q

djwj ≥ vT (S)

holds, for all S ⊂ N. Thus we obtain that z belongs to C(vT ).

4. Core Elements of Infinite Pooling Games

Again we start with the finite case. A pooling situation arises when a set of agents,
who own property rights of several interchangeable commodities, decide to coop-
erate sharing these property rights. Their goal is to maximize the total profit.
Thus, a finite pooling situation can be described by a 6−tuple (P, M,d, s,O,E),
where P is the finite set of agents, M the finite set of commodities, s ∈ Z

M
++ and

d ∈ Z
P
++, E ∈ R

P×M
+ and O ∈ Z

P×M
+ with

∑
i∈P Oij = sj . A feasible distribution

for a pooling situation is a matrix X ∈ Z
P×M
+ with integer entries and such that∑

i∈P xij ≤ sj , ∀ j ∈ M, and
∑

j∈M xij ≤ di, ∀ i ∈ P. To find an optimal allocation
of the commodities is to obtain a feasible distribution which maximizes the total
profit:

∑
i∈P,j∈M eijxij .

Associated with a pooling situation, Potters and Tijs (1987) introduced a finite
cooperative TU game (N, vO) with player set N = P and the value for a coalition
S ⊂ N is

max
∑

i∈P∩S

∑
j∈M∩S

eijxij

s.t :
∑

j∈M∩S

xij ≤ di, for all i ∈ P ∩ S

∑
i∈P∩S

xij ≤
∑

i∈P∩S

Oij , for all j ∈ M ∩ S

xij ∈ Z+, for all i ∈ P ∩ S, j ∈ M ∩ S

(4)

what the members in S can gain by pooling their rights.
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Going to infinite pooling situations and their corresponding games, they occur
when the number of players and the set of commodities are considered countably
infinite. Just as in the finite case, the value vO(S) of coalition S can be determined
by the linear program (4), replacing the maximum by the supremum since the sets
P and M are countable infinite.

We can consider each player formed by two parts: As a demander of a service
and as the owner of property rights of several commodities. Therefore, if we take
into account the total property rights

∑
i∈P Oij for each commodity j ∈ M and

split the player set into P ∪ M , we will deal with an infinite transportation situa-
tion (P, M,T,d, s) related to the infinite pooling situation (P, M,d, s,O,E) where
T = E and sj =

∑
i∈P Oij , for all j ∈ M . The corresponding infinite transportation

game (N ∪ N, vTO) satisfies

vO(S) = vTO({S ∩ P} ∪ {S ∩ M}), (5)

where S ∩ P = S and S ∩ M := {j ∈ M |∑i∈P∩S Oij = sj > 0}.

Theorem 6. Let (N, N,d, s,O,E) be an infinite pooling situation, with (N, vO) and
(N ∪ N, vTO) the corresponding infinite pooling game and the related transportation
game, respectively. Then C(vO) �= ∅.

Proof. According to Proposition 4, there exists (u;w) ∈ R
P × R

M a solution of
the dual program for the grand coalition. This element can be seen as a shadow
price vector for the resources, di for agents in P and sj =

∑
i∈P Oij for all j ∈ M ,

and it is such that∑
i∈P

diui +
∑
j∈M

sjwj = vTO
d (N ∪ N) = vTO(N ∪ N) (6)

and ∑
i∈S∩P

diui +
∑

j∈S∩M

sjwj ≥ vTO
d ({S ∩ P} ∪ {S ∩ M})

= vTO({S ∩ P} ∪ {S ∩ M}), (7)

for all S ⊂ N. Since each player i ∈ P is a demander of a service and, at the same
time, he has rights over j ∈ M , let us consider zi = diui+

∑
j∈M Oijwj for all i ∈ P.

We will show that the vector z ∈ R
P, where each coordinate can be interpreted as

what agent i receives from his demand and ownership parts, belongs to C(vO).

∑
i∈P

zi =
∑
i∈P

diui +
∑
i∈P

∑
j∈M

Oijwj =
∑
i∈P

diui +
∑
j∈M

(∑
i∈P

Oij

)
wj

=
∑
i∈P

diui +
∑
j∈M

sjwj = vTO(N ∪ N) = vO(N),
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where the last two equalities hold from (6) and (5). Further, for each S ⊂ N∑
i∈S∩P

zi =
∑

i∈S∩P

diui +
∑

i∈S∩P

∑
j∈S∩M

Oijwj

=
∑

i∈S∩P

diui +
∑

j∈S∩M

( ∑
i∈S∩P

Oij

)
wj

=
∑
i∈P

diui +
∑
j∈M

sjwj ≥ vTO({S ∩ P} ∪ {S ∩ M}) = vO(S),

where the inequality holds from (7) and the last equality from (5).

5. Concluding Remarks

In this paper we have considered infinite assignment games with finite value. When
vA(N ∪ N) = +∞, there is no duality gap and the utopia payoff can be used
to assure balancedness of infinite assignment games. This allocation (u∗,w∗) ∈
R

N ×R
N is obtained giving to each agent what he can expect at most, i.e.

u∗
i = sup

j∈W
aij∀ i ∈ N and w∗

j = sup
i∈M

aij∀ j ∈ N,

and it would play the same role as the optimal dual solutions to prove the non-
emptiness of the core in infinite permutation and transportation games with
unbounded value.

We have shown the non-emptiness of the core in infinite permutation games
using the idea suggested by L. S. Shapley for the finite case. As it was pointed
out in the introduction there are other techniques to prove balancedness in finite
permutation games. So it remains an open question how they could be adjusted to
this infinite context, especially what is related to the Birkhoff-von Neumann result
on doubly stochastic matrices.

In Sec. 3 we have analyzed the problem of finding core elements when we have
to transport indivisible goods. These results can be applied with infinitely divisible
goods when the total supply and demand are infinite, assuming that all suppliers
and demanders want to provide or to receive a positive amount. This is due to the
fact that this kind of transportation situations can be read as infinite transportation
situations with indivisible goods.
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