20 research outputs found

    Axon terminals control endolysosome diffusion to support synaptic remodelling

    Get PDF
    Endolysosomes are acidic organelles formed by the fusion ofendosomes with lysosomes. In the presynaptic compartment theycontribute to protein homeostasis, the maintenance of vesiclepools and synaptic stability. Here, we evaluated the mobility ofendolysosomes found in axon terminals of olfactory sensoryneurons ofXenopus tropicalistadpoles. F-actin restricts themotion of these presynaptic acidic organelles which is characterized by a diffusion coefficient of 6.7 × 1023μm2⋅s21. Local injection of secreted protein acidic and rich in cysteine (SPARC) inthe glomerular layer of the olfactory bulb disrupts the structureof synaptic F-actin patches and increases the presence andmobility of endolysosomal organelles found in axon terminals.The increased motion of endolysosomes is localized to the presynaptic compartment and does not promote their access toaxonal regions for retrograde transportation to the cell body. Local activation of synaptic degradation mechanisms mediated by SPARC coincides with a loss of the ability of tadpoles to detect waterborne odorants. Together, these observations show that the diffusion of presynaptic endolysosomes increases during conditions of synaptic remodelling to support their local degradativeactivity

    Synapse elimination activates a coordinated homeostatic presynaptic response in an autaptic circuit

    Get PDF
    The number of synapses present in a neuronal circuit is not fixed. Neurons must compensate for changes in connectivity caused by synaptic pruning, learning processes or pathological conditions through the constant adjustment of the baseline level of neurotransmission. Here, we show that cholinergic neurons grown in an autaptic circuit in the absence of glia sense the loss of half of their synaptic contacts triggered by exposure to peptide p4.2, a C-terminal fragment of SPARC. Synaptic elimination is driven by a reorganization of the periodic F-actin cytoskeleton present along neurites, and occurs without altering the density of postsynaptic receptors. Neurons recover baseline neurotransmission through a homeostatic presynaptic response that consists of the coordinated activation of rapid synapse formation and an overall potentiation of presynaptic calcium influx. These results demonstrate that neurons establishing autaptic connections continuously sense and adjust their synaptic output by tweaking the number of functional contacts and neurotransmitter release probability

    Exocytosis at the ribbon synapse of retinal bipolar cells studied in patches of presynaptic membrane

    Get PDF
    The distribution of exocytic sites and ion channels in the synaptic terminal of retinal bipolar cells was investigated by measuring capacitance and conductance changes in cell-attached patches of presynaptic membrane. Patch depolarization evoked capacitance and conductance increases that were inhibited by blocking Ca(2+) influx or loading the terminal with EGTA. The increase in capacitance declined as the depolarization approached the reversal potential for Ca(2+), indicating that it was a result of Ca(2+)-dependent exocytosis. The conductance increase was caused by K(Ca) channels that were also activated by Ca(2+) influx. Two observations indicated that sites of exocytosis and endocytosis colocalized with clusters of Ca(2+) channels and K(Ca) channels; the initial rate of exocytosis was correlated with the activation of K(Ca) channels, and exocytosis did not occur in the 41% of patches lacking this conductance. Electron microscopy demonstrated that there were approximately 16 vesicles docked to the plasma membrane at each active zone marked by a ribbon, but vesicles were also attached to the rest of the membrane at a density of 1.5/microm(2). The density of ribbons was 0.10 +/- 0.02/microm(2), predicting that approximately 43% of cell-attached patches would lack an active zone. The density of Ca(2+) channel clusters assayed by capacitance and conductance responses was therefore similar to the density of ribbons. These results are consistent with the idea that Ca(2+) channel clusters were colocalized with ribbons but do not exclude the possibility that calcium channels also occurred at other sites. The wide distribution of vesicles docked to the plasma membrane suggests that exocytosis might also be triggered by the spread of Ca(2+) from Ca(2+) channel clusters

    The mouth of a dense-core vesicle opens and closes in a concerted action regulated by calcium and amphiphysin

    Full text link
    Secretion of hormones and peptides by neuroendocrine cells occurs through fast and slow modes of vesicle fusion but the mechanics of these processes are not understood. We used interference reflection microscopy to monitor deformations of the membrane surface and found that both modes of fusion involve the tightly coupled dilation and constriction of the vesicle. The rate of opening is calcium dependent and occurs rapidly at concentrations <5 muM [corrected] The fast mode of fusion is blocked selectively by a truncation mutant of amphiphysin. Vesicles do not collapse when fusion is triggered by strontium, rather they remain locked open and membrane scission is blocked. In contrast, constriction of the vesicle opening continues when endocytosis is blocked by inhibiting the function of dynamin. Thus, fast and slow modes of fusion involve similar membrane deformations and vesicle closure can be uncoupled from membrane scission. Regulation of these processes by calcium and amphiphysin may provide a mechanism for controlling the release of vesicle contents

    SPARC triggers a cell-autonomous program of synapse elimination

    Full text link
    Elimination of the excess synaptic contacts established in the early stages of neuronal development is required to refine the function of neuronal circuits. Here we investigate whether secreted protein acidic and rich in cysteine (SPARC), a molecule produced by glial cells, is involved in synapse removal. SPARC production peaks when innervation of the rat superior cervical ganglion and the tail of Xenopus tropicalis tadpoles are remodeled. The formation of new cholinergic synapses in autaptic single-cell microcultures is inhibited by SPARC. The effect resides in the C-terminal domain, which is also responsible for triggering a concentration- and time-dependent disassembly of stable cholinergic synapses. The loss of synaptic contacts is associated with the formation of retracted axon terminals containing multivesicular bodies and secondary lysosomes. The biological relevance of in vitro results was supported by injecting the tail of Xenopus tropicalis tadpoles with peptide 4.2, a 20-aa sequence derived from SPARC that mimics full-length protein effects. Swimming was severely impaired at ∼5 h after peptide application, caused by the massive elimination of neuromuscular junctions and pruning of axonal branches. Effects revert by 6 d after injection, as motor innervation reforms. In conclusion, SPARC triggers a cell-autonomous program of synapse elimination in cholinergic neurons that likely occurs when protein production peaks during normal development

    Presynaptic clathrin levels are a limiting factor for synaptic transmission

    Get PDF
    To maintain communication, neurons must recycle their synaptic vesicles with high efficiency. This process places a huge burden on the clathrin-mediated endocytic machinery, but the consequences of this are poorly understood. We found that the amount of clathrin in a presynaptic terminal is not fixed. During stimulation, clathrin moves out of synapses as a function of stimulus strength and neurotransmitter release probability, which, together with membrane coat formation, transiently reduces the available pool of free clathrin triskelia. Correlative functional and morphological experiments in cholinergic autapses established by superior cervical ganglion neurons in culture show that presynaptic terminal function is compromised if clathrin levels fall by 20% after clathrin heavy chain knock down using RNAi. Synaptic transmission is depressed due to a reduction of cytoplasmic and readily releasable pools of vesicles. However, synaptic depression reverts after dialysis of exogenous clathrin, thus compensating RNAi-induced depletion. Lowering clathrin levels also reduces quantal size, which occurs concomitantly with a decrease in the size of synaptic vesicles. Large dense-core vesicles are unaffected by clathrin knock down. Together, our results show that clathrin levels are a dynamic property of presynaptic terminals that can influence short-term plasticity in a stimulus-dependent manner

    Automated high-throughput measurement of body movements and cardiac activity of Xenopus tropicalis tadpoles

    Get PDF
    Xenopus tadpoles are an emerging model for developmental, genetic and behavioral studies. A small size, optical accessibility of most of their organs, together with a close genetic and structural relationship to humans make them a convenient experimental model. However, there is only a limited toolset available to measure behavior and organ function of these animals at medium or high-throughput. Herein, we describe an imaging-based platform to quantify body and autonomic movements of Xenopus tropicalis tadpoles of advanced developmental stages. Animals alternate periods of quiescence and locomotor movements and display buccal pumping for oxygen uptake from water and rhythmic cardiac movements. We imaged up to 24 animals in parallel and automatically tracked and quantified their movements by using image analysis software. Animal trajectories, moved distances, activity time, buccal pumping rates and heart beat rates were calculated and used to characterize the effects of test compounds. We evaluated the effects of propranolol and atropine, observing a dose-dependent bradycardia and tachycardia, respectively. This imaging and analysis platform is a simple, cost-effective high-throughput in vivo assay system for genetic, toxicological or pharmacological characterizations

    Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor-guided behavior in Xenopus tadpoles

    Get PDF
    Olfactory sensory neurons (OSNs) are chemoreceptors that establish excitatory synapses within glomeruli of the olfactory bulb. OSNs undergo continuous turnover throughout life, causing the constant replacement of their synaptic contacts. Using Xenopus tadpoles as an experimental system to investigate rewiring of glomerular connectivity, we show that novel OSN synapses can transfer information immediately after formation, mediating olfactory-guided behavior. Tadpoles recover the ability to detect amino acids 4 days after bilateral olfactory nerve transection. Restoration of olfactory-guided behavior depends on the efficient reinsertion of OSNs to the olfactory bulb. Presynaptic terminals of incipient synaptic contacts generate calcium transients in response to odors, triggering long lasting depolarization of olfactory glomeruli. The functionality of reconnected terminals relies on well-defined readily releasable and cytoplasmic vesicle pools. The continuous growth of non-compartmentalized axonal processes provides a vesicle reservoir to nascent release sites, which contrasts to the gradual development of cytoplasmic vesicle pools in conventional excitatory synapses. The immediate availability of fully functional synapses upon formation supports an age-independent contribution of OSNs to the generation of odor maps

    KIS, a kinase associated with microtubule regulators, enhances translation of AMPA receptors and stimulates dendritic spine remodeling

    Get PDF
    Local regulation of protein synthesis allows a neuron to rapidly alter the proteome in response to synaptic signals, an essential mechanism in synaptic plasticity that is altered in many neurological diseases. Synthesis of many synaptic proteins is under local control and much of this regulation occurs through structures termed RNA granules. KIS is a protein kinase that associates with stathmin, a modulator of the tubulin cytoskeleton. Furthermore, KIS is found in RNA granules and stimulates translation driven by the β-actin 3'UTR in neurites. Here we explore the physiological and molecular mechanisms underlying the action of KIS on hippocampal synaptic plasticity in mice. KIS downregulation compromises spine development, alters actin dynamics, and reduces postsynaptic responsiveness. The absence of KIS results in a significant decrease of protein levels of PSD-95, a postsynaptic scaffolding protein, and the AMPAR subunits GluR1 and GluR2 in a CPEB3-dependent manner. Underlying its role in spine maturation, KIS is able to suppress the spine developmental defects caused by CPEB3 overexpression. Moreover, either by direct or indirect mechanisms, KIS counteracts the inhibitory activity of CPEB3 on the GluR2 3'UTR at both mRNA translation and polyadenylation levels. Our study provides insights into the mechanisms that mediate dendritic spine morphogenesis and functional synaptic maturation, and suggests KIS as a link regulating spine cytoskeleton and postsynaptic activity in memory formation

    Endophilin drives the fast mode of vesicle retrieval in a ribbon synapse

    Get PDF
    Compensatory endocytosis of exocytosed membrane and recycling of synaptic vesicle components is essential for sustained synaptic transmission at nerve terminals. At the ribbon-type synapse of retinal bipolar cells, manipulations expected to inhibit the interactions of the clathrin adaptor protein complex (AP2) affect only the slow phase of endocytosis (Ï„ = 10-15 s), leading to the conclusion that fast endocytosis (Ï„ = 1-2 s) occurs by a mechanism that differs from the classical pathway of clathrin-coated vesicle retrieval from the plasma membrane. Here we investigate the role of endophilin in endocytosis at this ribbon synapse. Endophilin A1 is a synaptically enriched N-BAR domain-containing protein, suggested to function in clathrin-mediated endocytosis. Internal dialysis of the synaptic terminal with dominant-negative endophilin A1 lacking its linker and Src homology 3 (SH3) domain inhibited the fast mode of endocytosis, while slow endocytosis continued. Dialysis of a peptide that binds endophilin SH3 domain also decreased fast retrieval. Electron microscopy indicated that fast endocytosis occurred by retrieval of small vesicles in most instances. These results indicate that endophilin is involved in fast retrieval of synaptic vesicles occurring by a mechanism that can be distinguished from the classical pathway involving clathrin-AP2 interactions
    corecore