15 research outputs found

    Quasithermodynamic Contributions to the Fluctuations of a Protein Nanopore

    No full text
    Proteins undergo thermally activated conformational fluctuations among two or more substates, but a quantitative inquiry on their kinetics is persistently challenged by numerous factors, including the complexity and dynamics of various interactions, along with the inability to detect functional substates within a resolvable time scale. Here, we analyzed in detail the current fluctuations of a monomeric β-barrel protein nanopore of known high-resolution X-ray crystal structure. We demonstrated that targeted perturbations of the protein nanopore system, in the form of loop-deletion mutagenesis, accompanying alterations of electrostatic interactions between long extracellular loops, produced modest changes of the differential activation free energies calculated at 25 °C, ΔΔ<i>G</i><sup><i>⧧</i></sup>, in the range near the thermal energy but substantial and correlated modifications of the differential activation enthalpies, ΔΔ<i>H</i><sup>⧧</sup>, and entropies, ΔΔ<i>S</i><sup>⧧</sup>. This finding indicates that the local conformational reorganizations of the packing and flexibility of the fluctuating loops lining the central constriction of this protein nanopore were supplemented by changes in the single-channel kinetics. These changes were reflected in the enthalpy–entropy reconversions of the interactions between the loop partners with a compensating temperature, <i>T</i><sub>C</sub>, of ∼300 K, and an activation free energy constant of ∼41 kJ/mol. We also determined that temperature has a much greater effect on the energetics of the equilibrium gating fluctuations of a protein nanopore than other environmental parameters, such as the ionic strength of the aqueous phase as well as the applied transmembrane potential, likely due to ample changes in the solvation activation enthalpies. There is no fundamental limitation for applying this approach to other complex, multistate membrane protein systems. Therefore, this methodology has major implications in the area of membrane protein design and dynamics, primarily by revealing a better quantitative assessment on the equilibrium transitions among multiple well-defined and functionally distinct substates of protein channels and pores

    Sampling a Biomarker of the Human Immunodeficiency Virus across a Synthetic Nanopore

    No full text
    One primary goal in nanobiotechnology is designing new methodologies for molecular biomedical diagnosis at stages much earlier than currently possible and without use of expensive reagents and sophisticated equipment. In this work, we show the proof of principle for single-molecule detection of the nucleocapsid protein 7 (NCp7), a protein biomarker of the HIV-1 virus, using synthetic nanopores and the resistive-pulse technique. The biosensing mechanism relied upon specific interactions between NCp7 and aptamers of stem-loop 3 (SL3) in the packaging domain of the retroviral RNA genome. One critical step of this study was the choice of the optimal size of the nanopores for accurate, label-free determinations of the dissociation constant of the NCp7 protein–SL3 RNA aptamer complex. Therefore, we systematically investigated the NCp7 protein–SL3 RNA aptamer complex employing two categories of nanopores in a silicon nitride membrane: (i) small, whose internal diameter was smaller than 6 nm, and (ii) large, whose internal diameter was in the range of 7 to 15 nm. Here, we demonstrate that only the use of nanopores with an internal diameter that is smaller than or comparable with the largest cross-sectional size of the NCp7–SL3 aptamer complex enables accurate measurement of the dissociation constant between the two interacting partners. Notably, this determination can be accomplished without the need for prior nanopore functionalization. Moreover, using small solid-state nanopores, we demonstrate the ability to detect drug candidates that inhibit the binding interactions between NCp7 and SL3 RNA by using a test case of <i>N</i>-ethylmaleimide

    Detergent Desorption of Membrane Proteins Exhibits Two Kinetic Phases

    No full text
    Gradual dissociation of detergent molecules from water-insoluble membrane proteins culminates in protein aggregation. However, the time-dependent trajectory of this process remains ambiguous because the signal-to-noise ratio of most spectroscopic and calorimetric techniques is drastically declined by the presence of protein aggregates in solution. We show that by using steady-state fluorescence polarization (FP) spectroscopy the dissociation of the protein–detergent complex (PDC) can be inspected in real time at detergent concentrations below the critical micelle concentration. This article provides experimental evidence of the coexistence of two distinct phases of the dissociations of detergent monomers from membrane proteins. We first noted a slow detergent predesolvation process, which was accompanied by a relatively modest change in the FP anisotropy, suggesting a small number of dissociated detergent monomers from the proteomicelles. This predesolvation phase was followed by a fast detergent desolvation process, which was highlighted by a major alteration in the FP anisotropy. The durations and rates of these phases were dependent on both the detergent concentration and the interfacial PDC interactions. Further development of this approach might lead to the creation of a new semiquantitative method for the assessment of the kinetics of association and dissociation of proteomicelles

    Aberrantly Large Single-Channel Conductance of Polyhistidine Arm-Containing Protein Nanopores

    No full text
    There have been only a few studies reporting on the impact of polyhistidine affinity tags on the structure, function, and dynamics of proteins. Because of the relatively short size of the tags, they are often thought to have little or no effect on the conformation or activity of a protein. Here, using membrane protein design and single-molecule electrophysiology, we determined that the presence of a hexahistidine arm at the N-terminus of a truncated FhuA-based protein nanopore, leaving the C-terminus untagged, produces an unusual increase in the unitary conductance to ∼8 nS in 1 M KCl. To the best of our knowledge, this is the largest single-channel conductance ever recorded with a monomeric β-barrel outer membrane protein. The hexahistidine arm was captured by an anti-polyhistidine tag monoclonal antibody added to the side of the channel-forming protein addition, but not to the opposite side, documenting that this truncated FhuA-based protein nanopore inserts into a planar lipid bilayer with a preferred orientation. This finding is in agreement with the protein insertion <i>in vivo</i>, in which the large loops face the extracellular side of the membrane. The aberrantly large single-channel conductance, likely induced by a greater cross-sectional area of the pore lumen, along with the vectorial insertion into a lipid membrane, will have profound implications for further developments of engineered protein nanopores

    An Outer Membrane Protein Undergoes Enthalpy- and Entropy-Driven Transitions

    No full text
    β-Barrel membrane proteins often fluctuate among various open substates, yet the nature of these transitions is not fully understood. Using temperature-dependent, single-molecule electrophysiology analysis, along with rational protein design, we show that OccK1, a member of the outer membrane carboxylate channel from <i>Pseudomonas aeruginosa</i>, features a discrete gating dynamics comprising both enthalpy-driven and entropy-driven current transitions. OccK1 was chosen for the analysis of these transitions, because it is a monomeric transmembrane β-barrel of a known high-resolution crystal structure and displays three distinguishable, time-resolvable open substates. Native and loop-deletion OccK1 proteins showed substantial changes in the activation enthalpies and entropies of the channel transitions, but modest alterations in the equilibrium free energies, confirming that the system never departs from equilibrium. Moreover, some current fluctuations of OccK1 indicated a counterintuitive, negative activation enthalpy, which was compensated by a significant decrease in the activation entropy. Temperature scanning of the single-channel properties of OccK1 exhibited a thermally induced switch of the energetically most favorable open substate at the lowest examined temperature of 4 °C. Therefore, such a semiquantitative assessment of the current fluctuation dynamics not only demonstrates the complexity of channel gating but also reveals distinct functional traits of a β-barrel outer membrane protein under different temperature circumstances

    OccK Channels from <i>Pseudomonas aeruginosa</i> Exhibit Diverse Single-Channel Electrical Signatures but Conserved Anion Selectivity

    No full text
    <i>Pseudomonas aeruginosa</i> is a Gram-negative bacterium that utilizes substrate-specific outer membrane (OM) proteins for the uptake of small, water-soluble nutrients employed in the growth and function of the cell. In this paper, we present for the first time a comprehensive single-channel examination of seven members of the OM carboxylate channel K (OccK) subfamily. Recent biochemical, functional, and structural characterization of the OccK proteins revealed their common features, such as a closely related, monomeric, 18-stranded β-barrel conformation with a kidney-shaped transmembrane pore and the presence of a basic ladder within the channel lumen. Here, we report that the OccK proteins exhibited fairly distinct unitary conductance values, in a much broader range than previously expected, which includes low (∼40–100 pS) and medium (∼100–380 pS) conductance. These proteins showed diverse single-channel dynamics of current gating transitions, revealing one-open substate (OccK3), two-open substate (OccK4–OccK6), and three-open substate (OccK1, OccK2, and OccK7) kinetics with functionally distinct conformations. Interestingly, we discovered that anion selectivity is a conserved trait among the members of the OccK subfamily, confirming the presence of a net pool of positively charged residues within their central constriction. Moreover, these results are in accord with an increased specificity and selectivity of these protein channels for negatively charged, carboxylate-containing substrates. Our findings might ignite future functional examinations and full atomistic computational studies for unraveling a mechanistic understanding of the passage of small molecules across the lumen of substrate-specific, β-barrel OM proteins

    Representative single-channel electrical recordings of the members of the OccD and OccK subfamilies with solved crystal structures.

    No full text
    <p>(A) OccD1; (B) OccD2; (C) OccD3; (D) OccK1; (E) OccK2; (F) OccK3; (G) OccK4; (H) OccK5; and (I) OccK6. The data were collected at an applied transmembrane potential of +80 mV. The buffer solution in the chamber contained 1 M KCl, 10 mM potassium phosphate, pH = 7.4. For the sake of clarity, the single-channel electrical traces were low-pass Bessel filtered at 2 kHz. The numbers located above the traces represent the single-channel conductance of the most probable substate of the channel. The averages were derived from at least three independent single-channel electrical recordings.</p

    Definition of Occ channel specificity.

    No full text
    <p>Uptake of radiolabeled arginine by OccD1, benzoate by OccK1, and glucuronate by OccK2 was measured in the presence of a 10-fold excess of unlabeled low-molecular weight compounds. In all cases, total levels of uptake are reported, expressed as a percentage of uptake in the absence of unlabeled compound (100%). Substrates containing a carboxyl group are italicized.</p>a<p>Reported values are the average of two or three experiments.</p>b<p>Efficient inhibition values, defined as resulting in <50% transport, are shown in bold.</p

    Small substrate-specific pores can mediate efficient substrate uptake.

    No full text
    <p>Comparison of pore sizes of OccD1 (PDB ID: 2 ODJ) and OccK1 with those of the non-specific porins OmpG and OmpF. The surface views are shown from the extracellular side.</p

    Binding and transport of antibiotics by Occ channels is very specific.

    No full text
    <p>Effect on arginine (A–C), benzoate (E), glucuronate (F), and pyroglutamate (G) uptake in the presence of a 10-fold excess of various antibiotics. (A) OccD1, (B) OccD2, (C) OccD3, (E) OccK1, (F) OccK2, and (G) OccK3. In addition, representative liposome swelling assays are shown with imipenem (D) and cefotaxime (H).</p
    corecore