7 research outputs found

    Nematicity from mixed S_{+-} + d_{x^2-y^2} states in iron-based superconductors

    Full text link
    We demonstrate that in iron-based superconductors, the extended S_{+-} SC state coexists with the d_{x^2-y^2} state under generic conditions. The mixed S_{+-} + d_{x^2-y^2} SC is a natural nematic state in which the tetragonal symmetry C_4 is broken to C_2 explaining puzzling findings of nematic SC in FeSe films [Science 332, 1410 (2011)]. Moreover, we report the possibility of a first order transition at low-T from the nematic S_{+-} + d_{x^2-y^2} state to the pure d_{x^2-y^2} state induced by the Zeeman magnetic field proposing an original experimental strategy for identifying our mixed nematic state in FeSe films. Extrapolating our findings, we argue that nematicity in non superconducting states of underdoped and undoped pnictides may reflect mixed S_{+-} + d_{x^2-y^2} Density Wave states.Comment: Improvements and corrections in the texte, references adde

    Inverse Proximity Effects at Spin-Triplet Superconductor-Ferromagnet Interface

    Full text link
    We investigate inverse proximity effects in a spin-triplet superconductor (TSC) interfaced with a ferromagnet (FM), assuming different types of magnetic profiles and chiral or helical pairings. The region of the coexistence of spin-triplet superconductivity and magnetism is significantly influenced by the orientation and spatial extension of the magnetization with respect to the spin configuration of the Cooper pairs, resulting into clearcut anisotropy signatures. A characteristic mark of the inverse proximity effect arises in the induced spin-polarization at the TSC interface. This is unexpectedly stronger when the magnetic proximity is weaker, thus unveiling immediate detection signatures for spin-triplet pairs. We show that an anomalous magnetic proximity can occur at the interface between the itinerant ferromagnet, SrRuO3_3, and the unconventional superconductor Sr2_2RuO4_4. Such scenario indicates the potential to design characteristic inverse proximity effects in experimentally available SrRuO3_3-Sr2_2RuO4_4 heterostructures and to assess the occurrence of spin-triplet pairs in the highly debated superconducting phase of Sr2_2RuO4_4.Comment: 11 pages, 6 figure

    Alternative paths to realize Majorana Fermions in Superconductor-Ferromagnet Heterostructures

    No full text
    Abstract A fundamental obstacle for achieving quantum computation is local decoherence. One way to circumvent this problem rests on the concepts of topological quantum computation using non-local information storage, for example on pairs of Majorana fermions (MFs). The arguably most promising way to generate MFs relies at present on spin-triplet p-wave states of superconductors (SC), which are not abundant in nature, unfortunately. Thus, proposals for their engineering in devices, usually via proximity effect from a conventional SC into materials with strong spin-orbit coupling (SOC), are intensively investigated nowadays. Here we take an alternative path, exploiting the different connections between fields based on a quartet coupling rule for fields introduced by one of us, we demonstrate that, for instance, coexisting Zeeman field with a charge current would provide the conditions to induce p-wave pairing in the presence of singlet superconductivity. This opens new avenues for the engineering of robust MFs in various, not necessarily (quasi-)one-dimensional, superconductor-ferromagnet heterostructures, including such motivated by recent pioneering experiments that report MFs, in particular, without the need of any exotic materials or special structures of intrinsic SOC

    Nodal superconducting exchange coupling

    No full text
    A superconducting spin valve consists of a thin-film superconductor between two ferromagnetic layers. A change of magnetization alignment shifts the superconducting transition temperature (Delta T-c) due to an interplay between the magnetic exchange energy and the superconducting condensate. The magnitude of Delta T-c scales inversely with the superconductor thickness (d(s)) and is zero when d s exceeds the superconducting coherence length (xi). Here, we report a superconducting spin-valve effect involving a different underlying mechanism in which magnetization alignment and Delta T-c are determined by nodal quasiparticle excitation states on the Fermi surface of the d-wave superconductor YBa2Cu3O7-delta, sandwiched between insulating layers of ferromagnetic Pr0.8Ca0.2MnO3. We observe Delta T-c values that approach 2 K with the sign of Delta T-c oscillating with d(s) over a length scale exceeding 100 xi and, for particular values of d(s), the superconducting state reinforces an antiparallel magnetization alignment. These results pave the way to all-oxide superconducting memory in which superconductivity modulates the magnetic state
    corecore