243,460 research outputs found
Particle swarm optimization with composite particles in dynamic environments
This article is placed here with the permission of IEEE - Copyright @ 2010 IEEEIn recent years, there has been a growing interest in the study of particle swarm optimization (PSO) in dynamic environments. This paper presents a new PSO model, called PSO with composite particles (PSO-CP), to address dynamic optimization problems. PSO-CP partitions the swarm into a set of composite particles based on their similarity using a "worst first" principle. Inspired by the composite particle phenomenon in physics, the elementary members in each composite particle interact via a velocity-anisotropic reflection scheme to integrate valuable information for effectively and rapidly finding the promising optima in the search space. Each composite particle maintains the diversity by a scattering operator. In addition, an integral movement strategy is introduced to promote the swarm diversity. Experiments on a typical dynamic test benchmark problem provide a guideline for setting the involved parameters and show that PSO-CP is efficient in comparison with several state-of-the-art PSO algorithms for dynamic optimization problems.This work was supported in part by the Key Program of the National Natural Science Foundation (NNSF) of China under Grant 70931001 and 70771021, the Science Fund for Creative Research Group of the NNSF of China under Grant 60821063 and 70721001, the Ph.D. Programs Foundation of the Ministry of education of China under Grant 200801450008, and by the Engineering and Physical Sciences Research Council of U.K. under Grant EP/E060722/1
Dynamical Monte Carlo investigation of spin reversals and nonequilibrium magnetization of single-molecule magnets
In this paper, we combine thermal effects with Landau-Zener (LZ) quantum
tunneling effects in a dynamical Monte Carlo (DMC) framework to produce
satisfactory magnetization curves of single-molecule magnet (SMM) systems. We
use the giant spin approximation for SMM spins and consider regular lattices of
SMMs with magnetic dipolar interactions (MDI). We calculate spin reversal
probabilities from thermal-activated barrier hurdling, direct LZ tunneling, and
thermal-assisted LZ tunnelings in the presence of sweeping magnetic fields. We
do systematical DMC simulations for Mn systems with various temperatures
and sweeping rates. Our simulations produce clear step structures in
low-temperature magnetization curves, and our results show that the thermally
activated barrier hurdling becomes dominating at high temperature near 3K and
the thermal-assisted tunnelings play important roles at intermediate
temperature. These are consistent with corresponding experimental results on
good Mn samples (with less disorders) in the presence of little
misalignments between the easy axis and applied magnetic fields, and therefore
our magnetization curves are satisfactory. Furthermore, our DMC results show
that the MDI, with the thermal effects, have important effects on the LZ
tunneling processes, but both the MDI and the LZ tunneling give place to the
thermal-activated barrier hurdling effect in determining the magnetization
curves when the temperature is near 3K. This DMC approach can be applicable to
other SMM systems, and could be used to study other properties of SMM systems.Comment: Phys Rev B, accepted; 10 pages, 6 figure
Heisenberg equation for a nonrelativistic particle on a hypersurface: from the centripetal force to a curvature induced force
In classical mechanics, a nonrelativistic particle constrained on an
curved hypersurface embedded in flat space experiences the centripetal
force only. In quantum mechanics, the situation is totally different for the
presence of the geometric potential. We demonstrate that the motion of the
quantum particle is "driven" by not only the the centripetal force, but also a
curvature induced force proportional to the Laplacian of the mean curvature,
which is fundamental in the interface physics, causing curvature driven
interface evolution.Comment: 4 page
The centripetal force law and the equation of motion for a particle on a curved hypersurface
It is pointed out that the current form of extrinsic equation of motion for a
particle constrained to remain on a hypersurface is in fact a half-finished
version for it is established without regard to the fact that the particle can
never depart from the geodesics on the surface. Once the fact be taken into
consideration, the equation takes that same form as that for centripetal force
law, provided that the symbols are re-interpreted so that the law is applicable
for higher dimensions. The controversial issue of constructing operator forms
of these equations is addressed, and our studies show the quantization of
constrained system based on the extrinsic equation of motion is favorable.Comment: 5 pages, major revisio
- …