222 research outputs found

    System Dynamics Modeling-based Study of Contingent Sourcing under Supply Disruptions

    Get PDF
    AbstractIn this paper, using the methodology of system dynamics modeling, we separately build two models for a supply chain under two circumstances of supply disruptions, without backup supplier, and with a contingent supplier. The retailer's total profits are also compared under these two circumstances of supply disruptions to help the decision-makers better understanding the backup purchasing strategy. The supply chain studied only involves one retailer and two independent suppliers that are referred to as major supplier and backup supplier. The paper contributes to the literature by providing a better understanding of the impacts of supply disruptions on the system performance and by shedding insights into the value of a backup supply

    Query-LIFE: Query-aware Language Image Fusion Embedding for E-Commerce Relevance

    Full text link
    Relevance module plays a fundamental role in e-commerce search as they are responsible for selecting relevant products from thousands of items based on user queries, thereby enhancing users experience and efficiency. The traditional approach models the relevance based product titles and queries, but the information in titles alone maybe insufficient to describe the products completely. A more general optimization approach is to further leverage product image information. In recent years, vision-language pre-training models have achieved impressive results in many scenarios, which leverage contrastive learning to map both textual and visual features into a joint embedding space. In e-commerce, a common practice is to fine-tune on the pre-trained model based on e-commerce data. However, the performance is sub-optimal because the vision-language pre-training models lack of alignment specifically designed for queries. In this paper, we propose a method called Query-LIFE (Query-aware Language Image Fusion Embedding) to address these challenges. Query-LIFE utilizes a query-based multimodal fusion to effectively incorporate the image and title based on the product types. Additionally, it employs query-aware modal alignment to enhance the accuracy of the comprehensive representation of products. Furthermore, we design GenFilt, which utilizes the generation capability of large models to filter out false negative samples and further improve the overall performance of the contrastive learning task in the model. Experiments have demonstrated that Query-LIFE outperforms existing baselines. We have conducted ablation studies and human evaluations to validate the effectiveness of each module within Query-LIFE. Moreover, Query-LIFE has been deployed on Miravia Search, resulting in improved both relevance and conversion efficiency

    Spatiotemporal Propagation Learning for Network-Wide Flight Delay Prediction

    Full text link
    Demystifying the delay propagation mechanisms among multiple airports is fundamental to precise and interpretable delay prediction, which is crucial during decision-making for all aviation industry stakeholders. The principal challenge lies in effectively leveraging the spatiotemporal dependencies and exogenous factors related to the delay propagation. However, previous works only consider limited spatiotemporal patterns with few factors. To promote more comprehensive propagation modeling for delay prediction, we propose SpatioTemporal Propagation Network (STPN), a space-time separable graph convolutional network, which is novel in spatiotemporal dependency capturing. From the aspect of spatial relation modeling, we propose a multi-graph convolution model considering both geographic proximity and airline schedule. From the aspect of temporal dependency capturing, we propose a multi-head self-attentional mechanism that can be learned end-to-end and explicitly reason multiple kinds of temporal dependency of delay time series. We show that the joint spatial and temporal learning models yield a sum of the Kronecker product, which factors the spatiotemporal dependence into the sum of several spatial and temporal adjacency matrices. By this means, STPN allows cross-talk of spatial and temporal factors for modeling delay propagation. Furthermore, a squeeze and excitation module is added to each layer of STPN to boost meaningful spatiotemporal features. To this end, we apply STPN to multi-step ahead arrival and departure delay prediction in large-scale airport networks. To validate the effectiveness of our model, we experiment with two real-world delay datasets, including U.S and China flight delays; and we show that STPN outperforms state-of-the-art methods. In addition, counterfactuals produced by STPN show that it learns explainable delay propagation patterns.Comment: 14 pages,8 figure

    MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecasting

    Full text link
    Multivariate time series forecasting poses an ongoing challenge across various disciplines. Time series data often exhibit diverse intra-series and inter-series correlations, contributing to intricate and interwoven dependencies that have been the focus of numerous studies. Nevertheless, a significant research gap remains in comprehending the varying inter-series correlations across different time scales among multiple time series, an area that has received limited attention in the literature. To bridge this gap, this paper introduces MSGNet, an advanced deep learning model designed to capture the varying inter-series correlations across multiple time scales using frequency domain analysis and adaptive graph convolution. By leveraging frequency domain analysis, MSGNet effectively extracts salient periodic patterns and decomposes the time series into distinct time scales. The model incorporates a self-attention mechanism to capture intra-series dependencies, while introducing an adaptive mixhop graph convolution layer to autonomously learn diverse inter-series correlations within each time scale. Extensive experiments are conducted on several real-world datasets to showcase the effectiveness of MSGNet. Furthermore, MSGNet possesses the ability to automatically learn explainable multi-scale inter-series correlations, exhibiting strong generalization capabilities even when applied to out-of-distribution samples.Comment: 13 pages, 12 figure

    March in Chat: Interactive Prompting for Remote Embodied Referring Expression

    Full text link
    Many Vision-and-Language Navigation (VLN) tasks have been proposed in recent years, from room-based to object-based and indoor to outdoor. The REVERIE (Remote Embodied Referring Expression) is interesting since it only provides high-level instructions to the agent, which are closer to human commands in practice. Nevertheless, this poses more challenges than other VLN tasks since it requires agents to infer a navigation plan only based on a short instruction. Large Language Models (LLMs) show great potential in robot action planning by providing proper prompts. Still, this strategy has not been explored under the REVERIE settings. There are several new challenges. For example, the LLM should be environment-aware so that the navigation plan can be adjusted based on the current visual observation. Moreover, the LLM planned actions should be adaptable to the much larger and more complex REVERIE environment. This paper proposes a March-in-Chat (MiC) model that can talk to the LLM on the fly and plan dynamically based on a newly proposed Room-and-Object Aware Scene Perceiver (ROASP). Our MiC model outperforms the previous state-of-the-art by large margins by SPL and RGSPL metrics on the REVERIE benchmark.Comment: Accepted by ICCV 202

    A Unified Object Counting Network with Object Occupation Prior

    Full text link
    The counting task, which plays a fundamental role in numerous applications (e.g., crowd counting, traffic statistics), aims to predict the number of objects with various densities. Existing object counting tasks are designed for a single object class. However, it is inevitable to encounter newly coming data with new classes in our real world. We name this scenario as \textit{evolving object counting}. In this paper, we build the first evolving object counting dataset and propose a unified object counting network as the first attempt to address this task. The proposed model consists of two key components: a class-agnostic mask module and a class-incremental module. The class-agnostic mask module learns generic object occupation prior via predicting a class-agnostic binary mask (e.g., 1 denotes there exists an object at the considering position in an image and 0 otherwise). The class-incremental module is used to handle new coming classes and provides discriminative class guidance for density map prediction. The combined outputs of class-agnostic mask module and image feature extractor are used to predict the final density map. When new classes come, we first add new neural nodes into the last regression and classification layers of class-incremental module. Then, instead of retraining the model from scratch, we utilize knowledge distillation to help the model remember what have already learned about previous object classes. We also employ a support sample bank to store a small number of typical training samples of each class, which are used to prevent the model from forgetting key information of old data. With this design, our model can efficiently and effectively adapt to new coming classes while keeping good performance on already seen data without large-scale retraining. Extensive experiments on the collected dataset demonstrate the favorable performance.Comment: Under review; The dataset and code will be available at: https://github.com/Tanyjiang/EOC

    Teacher Agent: A Non-Knowledge Distillation Method for Rehearsal-based Video Incremental Learning

    Full text link
    With the rise in popularity of video-based social media, new categories of videos are constantly being generated, creating an urgent need for robust incremental learning techniques for video understanding. One of the biggest challenges in this task is catastrophic forgetting, where the network tends to forget previously learned data while learning new categories. To overcome this issue, knowledge distillation is a widely used technique for rehearsal-based video incremental learning that involves transferring important information on similarities among different categories to enhance the student model. Therefore, it is preferable to have a strong teacher model to guide the students. However, the limited performance of the network itself and the occurrence of catastrophic forgetting can result in the teacher network making inaccurate predictions for some memory exemplars, ultimately limiting the student network's performance. Based on these observations, we propose a teacher agent capable of generating stable and accurate soft labels to replace the output of the teacher model. This method circumvents the problem of knowledge misleading caused by inaccurate predictions of the teacher model and avoids the computational overhead of loading the teacher model for knowledge distillation. Extensive experiments demonstrate the advantages of our method, yielding significant performance improvements while utilizing only half the resolution of video clips in the incremental phases as input compared to recent state-of-the-art methods. Moreover, our method surpasses the performance of joint training when employing four times the number of samples in episodic memory.Comment: Under review; Do We Really Need Knowledge Distillation for Class-incremental Video Learning

    TimeSQL: Improving Multivariate Time Series Forecasting with Multi-Scale Patching and Smooth Quadratic Loss

    Full text link
    Time series is a special type of sequence data, a sequence of real-valued random variables collected at even intervals of time. The real-world multivariate time series comes with noises and contains complicated local and global temporal dynamics, making it difficult to forecast the future time series given the historical observations. This work proposes a simple and effective framework, coined as TimeSQL, which leverages multi-scale patching and smooth quadratic loss (SQL) to tackle the above challenges. The multi-scale patching transforms the time series into two-dimensional patches with different length scales, facilitating the perception of both locality and long-term correlations in time series. SQL is derived from the rational quadratic kernel and can dynamically adjust the gradients to avoid overfitting to the noises and outliers. Theoretical analysis demonstrates that, under mild conditions, the effect of the noises on the model with SQL is always smaller than that with MSE. Based on the two modules, TimeSQL achieves new state-of-the-art performance on the eight real-world benchmark datasets. Further ablation studies indicate that the key modules in TimeSQL could also enhance the results of other models for multivariate time series forecasting, standing as plug-and-play techniques

    Cyber-Resilience Enhancement and Protection for Uneconomic Power Dispatch under Cyber-Attacks

    Get PDF
    False data injection (FDI), could cause severe uneconomic system operation and even large blackout, which is further compounded by the increasingly integrated fluctuating renewable generation. As a commonly conducted type of FDI, load redistribution (LR) attack is judiciously manipulated by attackers to alter the load measurement on power buses and affect the normal operation of power systems. In particular, LR attacks have been proved to easily bypass the detection of state estimation. This paper presents a novel distributionally robust optimization (DRO) for operating transmission systems against cyber-attacks while considering the uncertainty of renewable generation. The FDI imposed by an adversary aims to maximally alter system parameters and mislead system operations while the proposed optimization method is used to reduce the risks caused by FDI. Unlike the worst-case-oriented robust optimization, DRO neglects the extremely low-probability case and thus weakens the conservatism, resulting in more economical operation schemes. To obtain computational tractability, a semidefinite programming problem is reformulated and a constraint generation algorithm is utilized to efficiently solve the original problem in a hierarchical master and sub-problem framework. The proposed method can produce more secure and economic operation for the system of rich renewable under LR attacks, reducing load shedding and operation cost to benefit end customers, network operators, and renewable generation
    corecore