92 research outputs found

    Land subsidence over oilfields in the Yellow River Delta

    Get PDF
    Subsidence in river deltas is a complex process that has both natural and human causes. Increasing human activities like aquaculture and petroleum extraction are affecting the Yellow River delta, and one consequence is subsidence. The purpose of this study is to measure the surface displacements in the Yellow River delta region and to investigate the corresponding subsidence source. In this paper, the Stanford Method for Persistent Scatterers (StaMPS) package was employed to process Envisat ASAR images collected between 2007 and 2010. Consistent results between two descending tracks show subsidence with a mean rate up to 30 mm/yr in the radar line of sight direction in Gudao Town (oilfield), Gudong oilfield and Xianhe Town of the delta, each of which is within the delta, and also show that subsidence is not uniform across the delta. Field investigation shows a connection between areas of non-uniform subsidence and of petroleum extraction. In a 9 km2 area of the Gudao Oilfield, a poroelastic disk reservoir model is used to model the InSAR derived displacements. In general, good fits between InSAR observations and modeled displacements are seen. The subsidence observed in the vicinity of the oilfield is thus suggested to be caused by fluid extraction

    A Hybrid Approach for Biomarker Discovery from Microarray Gene Expression Data for Cancer Classification

    Get PDF
    Microarrays allow researchers to monitor the gene expression patterns for tens of thousands of genes across a wide range of cellular responses, phenotype and conditions. Selecting a small subset of discriminate genes from thousands of genes is important for accurate classification of diseases and phenotypes. Many methods have been proposed to find subsets of genes with maximum relevance and minimum redundancy, which can distinguish accurately between samples with different labels. To find the minimum subset of relevant genes is often referred as biomarker discovery. Two main approaches, filter and wrapper techniques, have been applied to biomarker discovery. In this paper, we conducted a comparative study of different biomarker discovery methods, including six filter methods and three wrapper methods. We then proposed a hybrid approach, FR-Wrapper, for biomarker discovery. The aim of this approach is to find an optimum balance between the precision of the biomarker discovery and the computation cost, by taking advantages of both filter method’s efficiency and wrapper method’s high accuracy. Our hybrid approach applies Fisher’s ratio, a simple method easy to understand and implement, to filter out most of the irrelevant genes, then a wrapper method is employed to reduce the redundancy. The performance of FR-Wrapper approach is evaluated over four widely used microarray datasets. Analysis of experimental results reveals that the hybrid approach can achieve the goal of maximum relevance with minimum redundancy

    Validation of 7 Years in-Flight HY-2A Calibration Microwave Radiometer Products Using Numerical Weather Model and Radiosondes

    Get PDF
    Haiyang-2A (HY-2A) has been working in-flight for over seven years, and the accuracy of HY-2A calibration microwave radiometer (CMR) data is extremely important for the wet troposphere delay correction (WTC) in sea surface height (SSH) determination. We present a comprehensive evaluation of the HY-2A CMR observation using the numerical weather model (NWM) for all the data available period from October 2011 to February 2018, including the WTC and the precipitable water vapor (PWV). The ERA(ECMWF Re-Analysis)-Interim products from European Centre for Medium-Range Weather Forecasts (ECMWF) are used for the validation of HY-2A WTC and PWV products. In general, a global agreement of root-mean-square (RMS) of 2.3 cm in WTC and 3.6 mm in PWV are demonstrated between HY-2A observation and ERA-Interim products. Systematic biases are revealed where before 2014 there was a positive WTC/PWV bias and after that, a negative one. Spatially, HY-2A CMR products show a larger bias in polar regions compared with mid-latitude regions and tropical regions and agree better in the Antarctic than in the Arctic with NWM. Moreover, HY-2A CMR products have larger biases in the coastal area, which are all caused by the brightness temperature (TB) contamination from land or sea ice. Temporally, the WTC/PWV biases increase from October 2011 to March 2014 with a systematic bias over 1 cm in WTC and 2 mm in PWV, and the maximum RMS values of 4.62 cm in WTC and 7.61 mm in PWV occur in August 2013, which is because of the unsuitable retrieval coefficients and systematic TB measurements biases from 37 GHz band. After April 2014, the TB bias is corrected, HY-2A CMR products agree very well with NWM from April 2014 to May 2017 with the average RMS of 1.68 cm in WTC and 2.65 mm in PWV. However, since June 2017, TB measurements from the 18.7 GHz band become unstable, which led to the huge differences between HY-2A CMR products and the NWM with an average RMS of 2.62 cm in WTC and 4.33 mm in PWV. HY-2A CMR shows high accuracy when three bands work normally and further calibration for HY-2A CMR is in urgent need. Furtherly, 137 global coastal radiosonde stations were used to validate HY-2A CMR. The validation based on radiosonde data shows the same variation trend in time of HY-2A CMR compared to the results from ECMWF, which verifies the results from ECMWF

    Acoustic Scene Clustering Using Joint Optimization of Deep Embedding Learning and Clustering Iteration

    Full text link
    Recent efforts have been made on acoustic scene classification in the audio signal processing community. In contrast, few studies have been conducted on acoustic scene clustering, which is a newly emerging problem. Acoustic scene clustering aims at merging the audio recordings of the same class of acoustic scene into a single cluster without using prior information and training classifiers. In this study, we propose a method for acoustic scene clustering that jointly optimizes the procedures of feature learning and clustering iteration. In the proposed method, the learned feature is a deep embedding that is extracted from a deep convolutional neural network (CNN), while the clustering algorithm is the agglomerative hierarchical clustering (AHC). We formulate a unified loss function for integrating and optimizing these two procedures. Various features and methods are compared. The experimental results demonstrate that the proposed method outperforms other unsupervised methods in terms of the normalized mutual information and the clustering accuracy. In addition, the deep embedding outperforms many state-of-the-art features.Comment: 9 pages, 6 figures, 11 tables. Accepted for publication in IEEE TM

    Validating HY-2A CMR precipitable water vapor using ground-based and shipborne GNSS observations

    Get PDF
    The calibration microwave radiometer (CMR) on board the Haiyang-2A (HY-2A) satellite provides wet tropospheric delay correction for altimetry data, which can also contribute to the understanding of climate system and weather processes. The ground-based global navigation satellite system (GNSS) provides precise precipitable water vapor (PWV) with high temporal resolution and could be used for calibration and monitoring of the CMR data, and shipborne GNSS provides accurate PWV over open oceans, which can be directly compared with uncontaminated CMR data. In this study, the HY-2A CMR water vapor product is validated using ground-based GNSS observations of 100 International GNSS Service (IGS) stations along the global coastline and 56 d shipborne GNSS observations over the Indian Ocean. The processing strategy for GNSS data and CMR data is discussed in detail. Special efforts were made in the quality control and reconstruction of contaminated CMR data. The validation result shows that HY-2A CMR PWV agrees well with ground-based GNSS PWV with 2.67 mm as the root mean square (rms) within 100 km. Geographically, the rms is 1.12 mm in the polar region and 2.78 mm elsewhere. The PWV agreement between HY-2A and shipborne GNSS shows a significant correlation with the distance between the ship and the satellite footprint, with an rms of 1.57 mm for the distance threshold of 100 km. Ground-based GNSS and shipborne GNSS agree with HY-2A CMR well

    An investigation in China urban population distribution from 2000 to 2010

    No full text
    We apply a model by Desmet and Rossi-Hansberg (2013) to quantify the impact of efficiency, urban amenity and excess friction on the population distribution of Chinese cities, using population census data in 2000 and 2010. By changing one of the above three characteristics into an average national level while keeping the other characteristics unchanged, we recalculated the urban population distribution. We found that there is an urban population reallocation when any one of the above three idiosyncratic characteristics has changed. On contrary, urban citizens utility level does not change much. We also included the urban efficiency externalities factors and find that the majority of the urban population will move into only a few number of cities. As a result, these cities’ population will rise dramatically. However, there is still a small amount of people willing to live in small cities since the congestion will decrease individuals’ utility. Finally, we find that population redistribution pattern is the same for 2000 and 2010.Bachelor of Art

    Effects of carbon nanotubes additions on flash ignition characteristics of Fe and Al nanoparticles

    No full text
    <p>The influences of carbon nanotubes (CNTs) additions on the flash ignition characteristics of Iron (Fe) and aluminum (Al) nanoparticles (NPs) were presented. CNTs can be used as the additive to these metal nanoparticles for improving the flash ignition and burning processes. Different mass fractions of CNTs additions were considered. The mixture of Al and CNTs could combust in air with obvious giant flame, whereas the mixture of Fe and CNTs combusted under a relative stable condition with slight red light. The temperature distributions were measured using non-contact optical method and showed that Al NPs mixed with CNTs were burning at a higher temperature level than Fe NPs. Although different mass fractions of CNTs cannot significantly change the overall flash ignition phenomenon, CNTs additions influenced the minimum ignition energy (MIE) of mixtures. The appropriate content of CNTs addition can decrease the Fe NPs MIE significantly. However, the Al NPs MIE decreased all along with the increase of CNTs content. The micro- and nano- structures of Fe and Al NPs with CNTs additions before and after ignitions were examined by scanning electron microscope and high-resolution transmission electron microscopy. It was found that the special thermal conductive characteristics of CNTs and the cross-connected features for metal particles with CNTs caused the enhancement of flash ignition.</p
    corecore