248 research outputs found

    Hybrid plasmonic photoreactors as visible light-mediated bactericides

    Full text link
    Photocatalytic compounds and complexes, such as tris(bipyridine)ruthenium(II), [Ru(bpy)3]2+, have recently attracted attention as light-mediated bactericides that can help to address the need for new antibacterial strategies. We demonstrate in this work that the bactericidal efficacy of [Ru(bpy)3]2+ and the control of its antibacterial function can be significantly enhanced through combination with a plasmonic nanoantenna. We report strong, visible light-controlled bacterial inactivation with a nanocomposite design that incorporates [Ru(bpy)3]2+ as a photocatalyst and a Ag nanoparticle (NP) core as a light-concentrating nanoantenna into a plasmonic hybrid photoreactor. The hybrid photoreactor platform is facilitated by a self-assembled lipid membrane that encapsulates the Ag NP and binds the photocatalyst. The lipid membrane renders the nanocomposite biocompatible in the absence of resonant illumination. Upon illumination, the plasmon-enhanced photoexcitation of the metal-to-ligand charge-transfer band of [Ru(bpy)3]2+ prepares the reactive excited state of the complex that oxidizes the nanocomposite membrane and increases its permeability. The photooxidation induces the release of [Ru(bpy)3]2+, Ag+, and peroxidized lipids into the ambient medium, where they interact synergistically to inactivate bacteria. We measured a 7 order of magnitude decrease in Gram-positive Arthrobacter sp. and a 4 order of magnitude decrease in Gram-negative Escherichia coli colony forming units with the photoreactor bactericides after visible light illumination for 1 h. In both cases, the photoreactor exceeds the bactericidal standard of a log reduction value of 3 and surpasses the antibacterial effect of free Ag NPs or [Ru(bpy)3]2+ by >4 orders of magnitude. We also implement the inactivation of a bacterial thin film in a proof-of-concept study.Accepted manuscrip

    Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses

    Full text link
    Covering: up to 2018 α-Ketoglutarate (αKG, also known as 2-oxoglutarate)-dependent mononuclear non-haem iron (αKG-NHFe) enzymes catalyze a wide range of biochemical reactions, including hydroxylation, ring fragmentation, C-C bond cleavage, epimerization, desaturation, endoperoxidation and heterocycle formation. These enzymes utilize iron(ii) as the metallo-cofactor and αKG as the co-substrate. Herein, we summarize several novel αKG-NHFe enzymes involved in natural product biosyntheses discovered in recent years, including halogenation reactions, amino acid modifications and tailoring reactions in the biosynthesis of terpenes, lipids, fatty acids and phosphonates. We also conducted a survey of the currently available structures of αKG-NHFe enzymes, in which αKG binds to the metallo-centre bidentately through either a proximal- or distal-type binding mode. Future structure-function and structure-reactivity relationship investigations will provide crucial information regarding how activities in this large class of enzymes have been fine-tuned in nature.R01 GM093903 - NIGMS NIH HHSAccepted manuscrip

    Mechanistic elucidation of two catalytically versatile iron(II)- and α-ketoglutarate-dependent enzymes: cases beyond hydroxylation

    Full text link
    Iron(II)- and α-ketoglutarate-dependent (Fe/αKG) enzymes catalyze a large array of reactions. Although hydroxylation reaction catalyzed by these enzymes has been investigated in great details, involving the ferryl (FeIV=O) as a key reactive intermediate. The mechanisms of reactions other than hydroxylation are still largely unknown. By using a combined biochemical, bio-organic, and spectroscopic approach, we have studied the mechanisms of two newly discovered Fe/αKG enzymes, FtmOx1 (endoperoxidase) and AsqJ (desaturase/epoxidase), revealing their strategies in controlling reactivity, namely the effect of redox/polar residues near the iron center, the electronic properties of the substrate, and the intrinsic reactivity of the ferryl intermediate.Accepted manuscrip

    Effect of Expansion and Tumor Challenge on Chemokine Receptor Expression in Cord Blood-Derived CAR-NK Cells

    Get PDF
    https://openworks.mdanderson.org/sumexp23/1055/thumbnail.jp

    Widely wavelength-tunable mid-infrared fluoride fiber lasers

    Get PDF
    We demonstrate widely wavelength-tunable continuous-wave (CW) and Q-switched Er3+-doped ZBLAN fluoride fiber lasers operating around 3 μm enabled by a volume Bragg grating (VBG). In the CW operation regime, a total wavelength tuning range of over 160-nm spanning from 2694 to 2854 nm has been achieved. For the Q-switched mode of operation, a slightly modified resonator configuration, incorporating a passive Q-switcher, topological insulator Bi2Te3 nanosheets, can produce stable pulse trains with a pulse width of 880 ns at a repetition rate of 81 kHz, while maintaining a wavelength tuning range of 62 nm from 2762 to 2824 nm through adjusting the VBG. In both operation regimes, the output spectral width is measured to be <;0.3 nm (full-width at half-maximum) over the whole tuning range. Our work both demonstrates the great wavelength-tuning potential of the Er3+ -doped fluoride fiber laser, and also paves a way for the development of a range of high-performance midinfrared laser sources

    Quantitative Structure-Activity Relationship Studies on Indenoisoquinoline Topoisomerase I Inhibitors as Anticancer Agents in Human Renal Cell Carcinoma Cell Line SN12C

    Get PDF
    Topoisomerase I is important for DNA replication and cell division, making it an attractive drug target for anticancer therapy. A series of indenoisoquinolines displaying potent Top1 inhibitory activity in human renal cell carcinoma cell line SN12C were selected to establish 3D-QSAR models using CoMFA and CoMSIA methods. Internal and external cross-validation techniques were investigated, as well as some measures taken, including region focusing, bootstrapping and the “leave-group-out” cross-validation method. The satisfactory CoMFA model predicted a q2 value of 0.659 and an r2 value of 0.949, indicating that electrostatic and steric properties play a significant role in potency. The best CoMSIA model, based on a combination of steric, electrostatic and H-bond acceptor descriptors, predicted a q2 value of 0.523 and an r2 value of 0.902. The models were graphically interpreted by contour plots which provided insight into the structural requirements for increasing the activity of a compound, providing a solid basis for future rational design of more active anticancer agents
    corecore