348 research outputs found

    Fundamental limits in Gaussian channels with feedback: confluence of communication, estimation, and control

    Get PDF
    The emerging study of integrating information theory and control systems theory has attracted tremendous attention, mainly motivated by the problems of control under communication constraints, feedback information theory, and networked systems. An often overlooked element is the estimation aspect; however, estimation cannot be studied isolatedly in those problems. Therefore, it is natural to investigate systems from the perspective of unifying communication, estimation, and control;This thesis is the first work to advocate such a perspective. To make Matters concrete, we focus on communication systems over Gaussian channels with feedback. For some of these channels, their fundamental limits for communication have been studied using information theoretic methods and control-oriented methods but remain open. In this thesis, we address the problems of characterizing and achieving the fundamental limits for these Gaussian channels with feedback by applying the unifying perspective;We establish a general equivalence among feedback communication, estimation, and feedback stabilization over the same Gaussian channels. As a consequence, we see that the information transmission (communication), information processing (estimation), and information utilization (control), seemingly different and usually separately treated, are in fact three sides of the same entity. We then reveal that the fundamental limitations in feedback communication, estimation, and control coincide: The achievable communication rates in the feedback communication problems can be alternatively given by the decay rates of the Cramer-Rao bounds (CRB) in the associated estimation problems or by the Bode sensitivity integrals in the associated control problems. Utilizing the general equivalence, we design optimal feedback communication schemes based on the celebrated Kalman filtering algorithm; these are the first deterministic, optimal communication schemes for these channels with feedback (except for the degenerated AWGN case). These schemes also extend the Schalkwijk-Kailath (SK) coding scheme and inherit its useful features, such as reduced coding complexity and improved performance. Hence, this thesis demonstrates that the new perspective plays a significant role in gaining new insights and new results in studying Gaussian feedback communication systems. We anticipate that the perspective could be extended to more general problems and helpful in building a theoretically and practically sound paradigm that unifies information, estimation, and control

    シンケイ ハッセイ ト キョケツセイ ノウ ショウガイ

    Get PDF
    Neuronal self-renewal following injuries to the adult brain has been clarified by many recent studies. Ischemic brain injuries have now been demonstrated as a trigger for neurogenesis via endogenous neural stem cells or progenitor cells located in the dentate subgranular zone, the subventricular lining of the lateral ventricle, and the posterior periventricle adjacent to the hippocampus. New neurons migrate to the granule cell layer or to the damaged CA1 region and striatum, where they express morphological markers characteristic of the local neurons. If the new neurons are fully integrated and become functional, a novel therapeutic strategy might be developed for stroke in humans. Key words : stem cell, neurogenesis, strok

    Quantized stabilization of nonlinear affine systems

    Get PDF

    On 3D simultaneous attack against manoeuvring target with communication delays

    Get PDF
    This article investigates the simultaneous attack problem of multiple missiles against a manoeuvring target with delayed information transmission in three-dimensional space. Based on the kinetic model of the missiles, the problem is divided into three demands: the velocity components normal to line-of-sight converge to zero in finite time, the component of motion states along line-of-sight should achieve consensus and converge to zero. The guidance law is designed for each demand and by theoretical proof, the upper bound of delay which can tolerate is presented and the consensus error of the relative distances can converge to a small neighbourhood of zero. And simulation example presented also demonstrates the validity of the theoretical result

    Mitochondrial dysfunction and therapeutic perspectives in osteoporosis

    Get PDF
    Osteoporosis (OP) is a systemic skeletal disorder characterized by reduced bone mass and structural deterioration of bone tissue, resulting in heightened vulnerability to fractures due to increased bone fragility. This condition primarily arises from an imbalance between the processes of bone resorption and formation. Mitochondrial dysfunction has been reported to potentially constitute one of the most crucial mechanisms influencing the pathogenesis of osteoporosis. In essence, mitochondria play a crucial role in maintaining the delicate equilibrium between bone formation and resorption, thereby ensuring optimal skeletal health. Nevertheless, disruption of this delicate balance can arise as a consequence of mitochondrial dysfunction. In dysfunctional mitochondria, the mitochondrial electron transport chain (ETC) becomes uncoupled, resulting in reduced ATP synthesis and increased generation of reactive oxygen species (ROS). Reinforcement of mitochondrial dysfunction is further exacerbated by the accumulation of aberrant mitochondria. In this review, we investigated and analyzed the correlation between mitochondrial dysfunction, encompassing mitochondrial DNA (mtDNA) alterations, oxidative phosphorylation (OXPHOS) impairment, mitophagy dysregulation, defects in mitochondrial biogenesis and dynamics, as well as excessive ROS accumulation, with regards to OP (Figure 1). Furthermore, we explore prospective strategies currently available for modulating mitochondria to ameliorate osteoporosis. Undoubtedly, certain therapeutic strategies still require further investigation to ensure their safety and efficacy as clinical treatments. However, from a mitochondrial perspective, the potential for establishing effective and safe therapeutic approaches for osteoporosis appears promising
    corecore