715 research outputs found

    Twin-field quantum key distribution with local frequency reference

    Full text link
    Twin-field quantum key distribution (TF-QKD) overcomes the linear rate-loss limit, which promises a boost of secure key rate over long distance. However, the complexity of eliminating the frequency differences between the independent laser sources hinders its practical application. Here, taking the saturated absorption spectroscopy of acetylene as an absolute reference, we propose and demonstrate a simple and practical approach to realize TF-QKD without requiring relative frequency control of the independent laser sources. Adopting the 4-intensity sending-or-not-sending TF-QKD protocol, we experimentally demonstrate the TF-QKD over 502 km, 301 km and 201 km ultra-low loss optical fiber respectively. We expect this high-performance scheme will find widespread usage in future intercity and free-space quantum communication networks.Comment: 13 pages, 5 figures, 7 table

    Quantum key distribution over 658 km fiber with distributed vibration sensing

    Full text link
    Twin-field quantum key distribution (TF-QKD) promises ultra-long secure key distribution which surpasses the rate distance limit and can reduce the number of the trusted nodes in long-haul quantum network. Tremendous efforts have been made towards implementation of TF-QKD, among which, the secure key with finite size analysis can distribute more than 500 km in the lab and in the field. Here, we demonstrate the sending-or-not-sending TF-QKD experimentally, achieving a secure key distribution with finite size analysis over 658 km ultra-low-loss optical fiber, improve the secure distance record by around 100 km. Meanwhile, in a TF-QKD system, any phase fluctuation due to temperature variation and ambient variation during the channel must be recorded and compensated, and all these phase information can then be utilized to sense the channel vibration perturbations. With our QKD system, we recovered the external vibrational perturbations on the fiber generated by an artificial vibroseis and successfully located the perturbation position with a resolution better than 1 km. Our results not only set a new distance record of QKD, but also demonstrate that the redundant information of TF-QKD can be used for remote sensing of the channel vibration, which can find applications in earthquake detection and landslide monitoring besides secure communication.Comment: 20 pages, 4 figures and 1 tabl

    Climatic and anthropogenic regulation of carbon transport and transformation in a karst river-reservoir system

    Get PDF
    The effect of dams on dissolved inorganic carbon (DIC) transport and riverine ecosystems is unclear in karst cascade reservoirs. Here, we analyzed water samples from a karst river system with seven cascade reservoirs along the Wujiang River, southwestern China, during one hydrological year. From upstream to downstream, the average concentration of DIC increased from 2.2 to 2.6 mmol/L and its carbon isotope composition (δ13CDIC) decreased from −8.0 to −10‰. Meanwhile, the air temperature (Ta) increased from 20.3 °C to 26.7 °C and 10 °C to 13.7 °C in the warm and cold seasons, respectively. The results suggest that a cascade of dams has a stronger effect on DIC dynamics and retention than a single dam. The good correlation between Ta/HRT (hydraulic retention time) and Δ[DIC] as well as Δ[δ13CDIC] mean that Ta and HRT affected the magnitude of the damming effect by altering changes in concentration of DIC and δ13CDIC in the reservoir compared to the inflowing water. In particular, daily regulated reservoirs with short retention times acted more like river corridors and had a smaller effect on carbon dynamics, so modulating retention time might be used reduce the effect of dams on the riverine ecosystem

    A simple scheme for quantum networks based on orbital angular momentum states of photons

    Full text link
    We propose a new quantum network scheme using orbital angular momentum states of photons to route the network and spin angular momentum states to encode the information. A four-user experimental scheme based on this efficient quantum network is analyzed in detail, which is particularly appealing for the free space quantum key distribution. Users can freely exchange quantum keys with each other.Comment: 9 pages, published in Optics Communications, 281, 5063-506

    Anti-AIDS agents 86. Synthesis and anti-HIV evaluation of 2′,3′-seco-3′-nor DCP and DCK analogues

    Get PDF
    In a continuing study of novel anti-HIV agents with drug-like structures and properties, 30 1′-O-, 1′-S-, 4′-O- and 4′-substituted-2′,3′-seco-3′-nor DCP and DCK analogues (8–37) were designed and synthesized. All newly synthesized seco-compounds were screened against HIV-1NL4-3 and a multiple reverse transcriptase (RT) inhibitor-resistant (RTMDR) strain in the TZM-bl cell line, using seco-DCK (7) and 2-ethyl-DCP (4) as controls. Several compounds (14, 18, 19, 22–24, and 32) exhibited potent anti-HIV activity with EC50 values ranging from 0.93 to 1.93 μM and therapeutic index (TI) values ranging from 20 to 39. 1′-O-Isopropoxy-2′,3′-seco-3′-nor-DCP (12) showed the greatest potency among the newly synthesized compounds with EC50 values of 0.47 and 0.88 μM, and TI of 96 and 51, respectively, against HIV-1NL4-3 and RTMDR strains. The seco-compounds exhibited better chemical stability in acidic conditions compared with DCP and DCK compounds. Overall, the results suggested that seco-DCP analogues with simplified structures may be more favorable for development as novel anti-HIV candidates

    MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1

    Get PDF
    AbstractMiR-17-92 cluster miRNAs are disclosed to contribute to the development of multiple organs and tumorigenesis, but their roles in pancreas development remains unclear. In this study, we found that miR-19b, a member of miR-17-92, was highly expressed in the pancreatic progenitor cells, and miR-19b could target the 3′ UTR of NeuroD1 mRNA to decrease its protein and mRNA levels. Functional analysis showed that miR-19b exerted little effect on the proliferation of pancreatic progenitors, whereas it inhibited the expression of insulin 1, but not insulin 2 in MIN6 cells. These results suggest that miR-19b can downregulate insulin 1 expression through targeting transcription factor NeuroD1, and thus regulate the differentiation and function of β-cells

    Pairing symmetry and properties of iron-based high temperature superconductors

    Full text link
    Pairing symmetry is important to indentify the pairing mechanism. The analysis becomes particularly timely and important for the newly discovered iron-based multi-orbital superconductors. From group theory point of view we classified all pairing matrices (in the orbital space) that carry irreducible representations of the system. The quasiparticle gap falls into three categories: full, nodal and gapless. The nodal-gap states show conventional Volovik effect even for on-site pairing. The gapless states are odd in orbital space, have a negative superfluid density and are therefore unstable. In connection to experiments we proposed possible pairing states and implications for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio
    • …
    corecore