25 research outputs found
TIGS: An Inference Algorithm for Text Infilling with Gradient Search
Text infilling is defined as a task for filling in the missing part of a
sentence or paragraph, which is suitable for many real-world natural language
generation scenarios. However, given a well-trained sequential generative
model, generating missing symbols conditioned on the context is challenging for
existing greedy approximate inference algorithms. In this paper, we propose an
iterative inference algorithm based on gradient search, which is the first
inference algorithm that can be broadly applied to any neural sequence
generative models for text infilling tasks. We compare the proposed method with
strong baselines on three text infilling tasks with various mask ratios and
different mask strategies. The results show that our proposed method is
effective and efficient for fill-in-the-blank tasks, consistently outperforming
all baselines.Comment: The 57th Annual Meeting of the Association for Computational
Linguistics (ACL 2019
Deep Poetry: A Chinese Classical Poetry Generation System
In this work, we demonstrate a Chinese classical poetry generation system
called Deep Poetry. Existing systems for Chinese classical poetry generation
are mostly template-based and very few of them can accept multi-modal input.
Unlike previous systems, Deep Poetry uses neural networks that are trained on
over 200 thousand poems and 3 million ancient Chinese prose. Our system can
accept plain text, images or artistic conceptions as inputs to generate Chinese
classical poetry. More importantly, users are allowed to participate in the
process of writing poetry by our system. For the user's convenience, we deploy
the system at the WeChat applet platform, users can use the system on the
mobile device whenever and wherever possible. The demo video of this paper is
available at https://youtu.be/jD1R_u9TA3M.Comment: Association for the Advancement of Artificial Intelligence,
Demonstrations Program. AAAI 202
Revision in Continuous Space: Unsupervised Text Style Transfer without Adversarial Learning
Typical methods for unsupervised text style transfer often rely on two key
ingredients: 1) seeking the explicit disentanglement of the content and the
attributes, and 2) troublesome adversarial learning. In this paper, we show
that neither of these components is indispensable. We propose a new framework
that utilizes the gradients to revise the sentence in a continuous space during
inference to achieve text style transfer. Our method consists of three key
components: a variational auto-encoder (VAE), some attribute predictors (one
for each attribute), and a content predictor. The VAE and the two types of
predictors enable us to perform gradient-based optimization in the continuous
space, which is mapped from sentences in a discrete space, to find the
representation of a target sentence with the desired attributes and preserved
content. Moreover, the proposed method naturally has the ability to
simultaneously manipulate multiple fine-grained attributes, such as sentence
length and the presence of specific words, when performing text style transfer
tasks. Compared with previous adversarial learning based methods, the proposed
method is more interpretable, controllable and easier to train. Extensive
experimental studies on three popular text style transfer tasks show that the
proposed method significantly outperforms five state-of-the-art methods.Comment: Association for the Advancement of Artificial Intelligence. AAAI 202