177 research outputs found

    Evaluation of real-time PCR endogenous control genes for analysis of gene expression in bovine endometrium

    Get PDF
    Background: Quantitative real-time PCR gene expression results are generally normalised using endogenous control genes. These reference genes should be expressed at a constant level across all sample groups in a study, and should not be influenced by study treatments or conditions. There has been no systematic investigation of endogenous control genes for bovine endometrium to date. The suitability of both commonly used and novel endogenous control genes was evaluated in this study, with the latter being selected from stably expressed transcripts identified through microarray analysis of bovine endometrium. Fifteen candidate endogenous control genes were assessed across different tissue subtypes in pregnant and cycling Holstein-Friesian dairy cows from two divergent genetic backgrounds

    A frameshift-deletion mutation in Reelin causes cerebellar hypoplasia in White Swiss Shepherd dogs.

    Get PDF
    Cerebellar hypoplasia is a heterogeneous neurological condition in which the cerebellum is smaller than usual or not completely developed. The condition can have genetic origins, with Mendelian-effect mutations described in several mammalian species. Here, we describe a genetic investigation of cerebellar hypoplasia in White Swiss Shepherd dogs, where two affected puppies were identified from a litter with a recent common ancestor on both sides of their pedigree. Whole genome sequencing was conducted for 10 dogs in this family, and filtering of these data based on a recessive transmission hypothesis highlighted five protein-altering candidate variants - including a frameshift-deletion of the Reelin (RELN) gene (p.Val947*). Given the status of RELN as a gene responsible for cerebellar hypoplasia in humans, sheep and mice, these data strongly suggest the loss-of-function variant as underlying these effects. This variant has not been found in other dog breeds nor in a cohort of European White Swiss Shepherds, suggesting a recent mutation event. This finding will support the genotyping of a more diverse sample of dogs, and should aid future management of the harmful allele through optimised mating schemes

    Modulation of the maternal immune system by the pre-implantation embryo

    Get PDF
    Background: A large proportion of pregnancy losses occur during the pre-implantation period, when the developing embryo is elongating rapidly and signalling its presence to the maternal system. The molecular mechanisms that prevent luteolysis and support embryo survival within the maternal environment are not well understood. To gain a more complete picture of these molecular events, genome-wide transcriptional profiles of reproductive day 17 endometrial tissue were determined in pregnant and cyclic Holstein-Friesian dairy cattle

    Genome-wide association analysis reveals QTL and candidate mutations involved in white spotting in cattle

    Get PDF
    International audienceAbstractBackgroundWhite spotting of the coat is a characteristic trait of various domestic species including cattle and other mammals. It is a hallmark of Holstein–Friesian cattle, and several previous studies have detected genetic loci with major effects for white spotting in animals with Holstein–Friesian ancestry. Here, our aim was to better understand the underlying genetic and molecular mechanisms of white spotting, by conducting the largest mapping study for this trait in cattle, to date.ResultsUsing imputed whole-genome sequence data, we conducted a genome-wide association analysis in 2973 mixed-breed cows and bulls. Highly significant quantitative trait loci (QTL) were found on chromosomes 6 and 22, highlighting the well-established coat color genes KIT and MITF as likely responsible for these effects. These results are in broad agreement with previous studies, although we also report a third significant QTL on chromosome 2 that appears to be novel. This signal maps immediately adjacent to the PAX3 gene, which encodes a known transcription factor that controls MITF expression and is the causal locus for white spotting in horses. More detailed examination of these loci revealed a candidate causal mutation in PAX3 (p.Thr424Met), and another candidate mutation (rs209784468) within a conserved element in intron 2 of MITF transcripts expressed in the skin. These analyses also revealed a mechanistic ambiguity at the chromosome 6 locus, where highly dispersed association signals suggested multiple or multiallelic QTL involving KIT and/or other genes in this region.ConclusionsOur findings extend those of previous studies that reported KIT as a likely causal gene for white spotting, and report novel associations between candidate causal mutations in both the MITF and PAX3 genes. The sizes of the effects of these QTL are substantial, and could be used to select animals with darker, or conversely whiter, coats depending on the desired characteristics

    Genome-wide association analysis reveals QTL and candidate mutations involved in white spotting in cattle

    Get PDF
    International audienceAbstractBackgroundWhite spotting of the coat is a characteristic trait of various domestic species including cattle and other mammals. It is a hallmark of Holstein–Friesian cattle, and several previous studies have detected genetic loci with major effects for white spotting in animals with Holstein–Friesian ancestry. Here, our aim was to better understand the underlying genetic and molecular mechanisms of white spotting, by conducting the largest mapping study for this trait in cattle, to date.ResultsUsing imputed whole-genome sequence data, we conducted a genome-wide association analysis in 2973 mixed-breed cows and bulls. Highly significant quantitative trait loci (QTL) were found on chromosomes 6 and 22, highlighting the well-established coat color genes KIT and MITF as likely responsible for these effects. These results are in broad agreement with previous studies, although we also report a third significant QTL on chromosome 2 that appears to be novel. This signal maps immediately adjacent to the PAX3 gene, which encodes a known transcription factor that controls MITF expression and is the causal locus for white spotting in horses. More detailed examination of these loci revealed a candidate causal mutation in PAX3 (p.Thr424Met), and another candidate mutation (rs209784468) within a conserved element in intron 2 of MITF transcripts expressed in the skin. These analyses also revealed a mechanistic ambiguity at the chromosome 6 locus, where highly dispersed association signals suggested multiple or multiallelic QTL involving KIT and/or other genes in this region.ConclusionsOur findings extend those of previous studies that reported KIT as a likely causal gene for white spotting, and report novel associations between candidate causal mutations in both the MITF and PAX3 genes. The sizes of the effects of these QTL are substantial, and could be used to select animals with darker, or conversely whiter, coats depending on the desired characteristics

    Genetic strain and reproductive status affect endometrial fatty acid concentrations

    No full text
    Poor reproductive performance limits cow longevity in seasonal, pasture-based dairy systems. Few differences in ovarian dynamics have been reported in different strains of Holstein-Friesian cows, implying that the uterine environment may be a key component determining reproductive success. To test the hypothesis that the uterine environment differs among genetic strains of the Holstein-Friesian cow, endometrial fatty acids ( FA) were analyzed from New Zealand ( NZ), and North American (NA) Holstein-Friesian cows. The effect of reproductive status was also investigated, with cows from both Holstein-Friesian strains slaughtered on either d 17 of the estrous cycle ( termed cyclic) or d 17 of pregnancy ( after embryo transfer; termed pregnant). Endometrial tissues were collected from 22 cows ( NZ pregnant, n = 6; NZ cyclic, n = 4; NA pregnant, n = 6; NA cyclic, n = 6), and FA composition was analyzed. Daily plasma progesterone concentrations, milk production, milk FA composition, body weight, and body condition score were determined. Milk yield (4% fat-corrected milk) was similar for the NZ (28.5 kg/d) and NA (29.3 kg/d; SE 2.07 kg/d) cows, but NZ cows had a greater mean milk fat percentage. Mean plasma progesterone concentrations were significantly greater in NZ cows. Plasma progesterone concentrations were similar in the pregnant and cyclic groups. Mean length of the trophoblast recovered from the pregnant cows (NZ: 20.8 +/- 2.84 cm; NA: 27.9 +/- 10.23 cm) was not affected by genetic strain. Endometrial tissues from NZ cows contained greater concentrations of C17:0, C20:3n-3, and total polyunsaturated FA. The endometria from pregnant cows contained greater concentrations of C17:0, C20:2, and C20: 3n-6, and less C20:1, C20:2, C20:5n-3. The observed changes in endometrial FA between Holstein-Friesian cows of different genetic origins or reproductive states may reflect differences in endometrial function and may affect reproductive function

    DNA methylation is correlated with gene expression during early pregnancy in Bos taurus

    No full text
    Coordinated regulation of endometrial gene expression is essential for successful pregnancy establishment. A nonreceptive uterine environment may be a key contributor to pregnancy loss, as the majority of pregnancy losses occur prior to embryo implantation. DNA methylation has been highlighted as a potential contributor in regulating early pregnancy events in the uterus. It was hypothesized that DNA methylation regulates expression of key genes in the uterus during pregnancy. The correlation between DNA methylation and gene expression was tested. Endometrial samples from fertile and subfertile dairy cow strains were obtained at day 17 of pregnancy or the reproductive cycle. Microarrays were used to characterize genome-wide DNA methylation profiles and data compared with previously published transcription profiles. 39% of DNA methylation probes assayed mapped to RefSeq genes with transcription measurements. Correlations among gene expression and DNA methylation were assessed, and the 1,000 most significant correlations used for subsequent analysis. Of these, 52% percent were negatively correlated with gene expression. When this gene list was compared with previously reported gene expression studies on the same tissues, 42% were differentially expressed when pregnant and cycling animals were compared, and 11% were differentially expressed when pregnant fertile and subfertile animals were compared. DNA methylation status was correlated with gene expression in several pathways implicated in early pregnancy events. Although these data do not provide direct evidence of a causative association between DNA methylation and gene expression, this study provides critical support for an effect of DNA methylation in early pregnancy events and highlights candidate genes for future studies

    The genomes of precision edited cloned calves show no evidence for off-target events or increased de novo mutagenesis

    No full text
    Abstract Background Animal health and welfare are at the forefront of public concern and the agricultural sector is responding by prioritising the selection of welfare-relevant traits in their breeding schemes. In some cases, welfare-enhancing traits such as horn-status (i.e., polled) or diluted coat colour, which could enhance heat tolerance, may not segregate in breeds of primary interest, highlighting gene-editing tools such as the CRISPR-Cas9 technology as an approach to rapidly introduce variation into these populations. A major limitation preventing the acceptance of CRISPR-Cas9 mediated gene-editing, however, is the potential for off-target mutagenesis, which has raised concerns about the safety and ultimate applicability of this technology. Here, we present a clone-based study design that has allowed a detailed investigation of off-target and de novo mutagenesis in a cattle line bearing edits in the PMEL gene for diluted coat-colour. Results No off-target events were detected from high depth whole genome sequencing performed in precursor cell-lines and resultant calves cloned from those edited and non-edited cell lines. Long molecule sequencing at the edited site and plasmid-specific PCRs did not reveal structural variations and/or plasmid integration events in edited samples. Furthermore, an in-depth analysis of de novo mutations across the edited and non-edited cloned calves revealed that the mutation frequency and spectra were unaffected by editing status. Cells in culture, however, appeared to have a distinct mutation signature where de novo mutations were predominantly C > A mutations, and in cloned calves they were predominantly T > G mutations, deviating from the expected excess of C > T mutations. Conclusions We found no detectable CRISPR-Cas9 associated off-target mutations in the gene-edited cells or calves derived from the gene-edited cell line. Comparison of de novo mutation in two gene-edited calves and three non-edited control calves did not reveal a higher mutation load in any one group, gene-edited or control, beyond those anticipated from spontaneous mutagenesis. Cell culture and somatic cell nuclear transfer cloning processes contributed the major source of contrast in mutational profile between samples

    Modification of endometrial fatty acid concentrations by the pre-implantation conceptus in pasture-fed dairy cows

    No full text
    The current study determined whether the pre-implantation conceptus modified endometrial fatty acid concentrations. Oestrus was synchronized in 14 mature lactating cows and embryos were transferred on day 7. Cows were slaughtered 10 d later, with each uterine horn flushed, the preimplantation conceptus located, and inter-caruncular endometrial tissue collected from the gravid horn (containing the pre-implantation conceptus) and non-gravid horn. Endometrial fatty acid concentrations in the gravid and non-gravid horn were compared using linear models in restricted maxiumum likelihood. Investigations of the correlations among selected fatty acids and trophoblast weight or uterine fluid interferon-tau (IFN-tau) concentrations were also undertaken. The presence of the pre-implantation conceptus had relatively minor effects on endometrial fatty acid concentrations, but the omega 6:omega 3 ratio was greater and concentrations of stearic and oleic acid were slightly increased in the gravid horn. In the gravid horn, a negative linear relationship between the concentration of arachidonic acid and conceptus weight and IFN-tau concentration in the uterine luminal fluid were observed. In contrast, there was a positive relationship between concentrations of dihomo-gamma-linolenic acid in the non-gravid horn and conceptus weight. In conclusion, the presence of the preimplantation conceptus appears to modulate endometrial fatty acids, as indicated by the differences in endometria I fatty acid concentrations in the gravid and non-gravid uterine horns. The physiological implication of these local effects of the pre-implantation conceptus, on reproductive success requires further investigation
    corecore