5 research outputs found

    Table_1_Plant-insect interactions across the Triassic–Jurassic boundary in the Sichuan Basin, South China.xlsx

    No full text
    Plants and insects are the most diverse and ecologically important organisms in the terrestrial biosphere. Their interactions are also among the richest biotic relationships, and offer significant insights into the evolution of terrestrial ecosystem complexity through the geological record. This investigation of the late Rhaetian Xujiahe and the earliest Jurassic Zhenzhuchong floral assemblages provides the first data on foliar herbivory generated by terrestrial arthropods across the Triassic–Jurassic transition in the eastern Tethys (East Asia) region. The damage types from two fossil assemblages are collectively attributed to seven functional feeding and egg-laying categories (i.e., hole feeding, margin feeding, surface feeding, skeletonization, piercing and sucking, oviposition, and galling). Most feeding strategies are spread across the major plant groups and persist through the Triassic–Jurassic boundary, with the exception of skeletonization (a category of external foliage feeding), which was restricted to the latest Triassic within dipteridacean ferns. The survey reveals that the respective frequency and diversity of interactions between plants and insects prior to and following the end-Triassic mass extinction event are almost the same, despite a substantial turnover of floral components. This suggest that insect herbivores were largely able to transfer to alternative (but commonly related) plant groups during the dramatic floristic turnover and environmental changes at the end of the Triassic. Sporadic occurrences of foliar modifications, such as marginal cusps on pinnules of Pterophyllum and prominent ridges on the rachises of some ferns and bennettites are interpreted as adaptations for defense against insect herbivores. A few differences in taxonomic composition and herbivory representation between the latest Triassic Xujiahe flora and the earliest Jurassic Zhenzhuchong flora are more likely to be related to collection and preservational biases rather than reflecting palaeoecological changes. We encourage further investigations exploring the distribution of insect damage in fossil floras from other palaeolatitudinal zones and spanning other major extinction events to develop a better understanding of terrestrial ecosystem responses to major crises in Earth’s history.</p

    Image_1_Fecal microbiota transplantation from HUC-MSC-treated mice alleviates acute lung injury in mice through anti-inflammation and gut microbiota modulation.tif

    No full text
    IntroductionAcute lung injury (ALI) is a severe respiratory tract disorder facilitated by dysregulated inflammation, oxidative stress and intestinal ecosystem. Fecal microbiota transplantation (FMT) is a rapid method for gut microbiota (GM) reconstruction. Furthermore, our previous studies have confirmed that human umbilical cord mesenchymal stromal cells (HUC-MSCs) can alleviate ALI by improving GM composition. Therefore, we aimed to explore the efficacy and mechanism of FMT from HUC-MSCs-treated mice on ALI.MethodsIn brief, fresh feces from HUC-MSCs-treated mice were collected for FMT, and the mice were randomly assigned into NC, FMT, LPS, ABX-LPS, and ABX-LPS-FMT groups (n = 12/group). Subsequently, the mice were administrated with antibiotic mixtures to deplete GM, and given lipopolysaccharide and FMT to induce ALI and rebuild GM. Next, the therapeutic effect was evaluated by bronchoalveolar lavage fluid (BALF) and histopathology. Immune cells in peripheral blood and apoptosis in lung tissues were measured. Furthermore, oxidative stress- and inflammation-related parameter levels were tested in BALF, serum, lung and ileal tissues. The expressions of apoptosis-associated, TLR4/NF-κB pathway-associated, Nrf2/HO-1 pathway related and tightly linked proteins in the lung and ileal tissues were assessed. Moreover, 16S rRNA was conducted to assess GM composition and distribution.ResultsOur results revealed that FMT obviously improved the pathological damage of lung and ileum, recovered the immune system of peripheral blood, decreased the cell apoptosis of lung, and inhibited inflammation and oxidative stress in BALF, serum, lung and ileum tissues. Moreover, FMT also elevated ZO-1, claudin-1, and occludin protein expressions, activating the Nrf2/HO-1 pathway but hindering the TLR4/NF-κB pathway. Of note, the relative abundances of Bacteroides, Christensenella, Coprococcus, and Roseburia were decreased, while the relative abundances of Xenorhabdus, Sutterella, and Acinetobacter were increased in the ABX-LPS-FMT group.ConclusionFMT from HUC-MSCs-treated mice may alleviate ALI by inhibiting inflammation and reconstructing GM, additionally, we also found that the TLR4/NF-κB and Nrf2/HO-1 pathways may involve in the improvement of FMT on ALI, which offers novel insights for the functions and mechanisms of FMT from HUC-MSCs-treated mice on ALI.</p

    Additional file 2: Table S1. of Wheat WCBP1 encodes a putative copper-binding protein involved in stripe rust resistance and inhibition of leaf senescence

    No full text
    . Detailed information on 112 ESTs. A BLAST search was performed using BLASTX in NCBI. In silico mapping was performed using the IWGSC draft wheat sequence database. Table S2. BLAST searches performed for the forward subtraction clones found in the stripe rust-resistant genotype L693. Table S3. The primers used to amplify ESTs. Primer pairs were only designed for 62 out of the 112 ESTs because the remaining ESTs were too short to be used for primer design. Table S4. Primers were designed according to the sequence of the contig (3837062) carrying the polymorphic amplicon, which was located on wheat chromosome 1B ( http://www.wheatgenome.org/ ). These amplicons were used to determine the linkage relationship between the markers and the stripe rust resistance gene in L693. Table S5. Results of the amplification of 5 WCBP1-linked genetic markers in an F2 population derived from crosses between L661 and L693 and between L693 and L661. The genotypes (RR, Rr, rr) of the F2 individuals were determined according to the phenotypes of the corresponding F2:3 families; "A" and "B" for the individual F2 populations were derived from crosses between L661 and L693 and between L693 and L661, respectively. R represents the same amplicon as the resistant parent L693; S represents the same amplicon as the susceptible parent L661; H represents the heterozygous condition. The yield components of the F2 plants, including the number of grains per ear (N s ), the total grain weight per ear (T w ) and the 1000-grain weight (S w ), are provided. ‘\’ represents a missing yield component in the F2 plants. Table S6. The sequences of seven primer pairs designed according to the sequence of a cloned candidate gene in silico; these primers were used for PCR-based gene cloning from genomic DNA. Table S7. Primers for q-PCR analysis. (ZIP 94 kb

    Additional file 1: Figure S1. of Wheat WCBP1 encodes a putative copper-binding protein involved in stripe rust resistance and inhibition of leaf senescence

    No full text
    Length distributions of the wheat leaf ESTs (A) and the assembled uniESTs (B), including contigs (C) and singletons (D). Figure S2. Primers and the amplified region of genomic DNA. To clone the WCBP1 gene, primers were designed according to the Chinese Spring draft genome sequence. Full-length amplification was performed using the 1B-1 forward primer and the 1B-6 reverse primer. Figure S3. Comparison of WCBP1 gene sequences. WCBP1 encodes a heavy metal copper-binding protein with two copper sensing domains. The four sequences were cloned using PCR with primers designed according to the polymorphic fragment. L693 is the stripe rust-resistant line; L661 is the stripe rust-susceptible line; YU25 is the resistant parent of L693 and L661; MY11 is the susceptible parent of L693 and L661. Figure S4. Quality map of the sequences flanking the SNP site. A represents L693; B represents YU25; C represents L661; D represents MY11, which showed that the SNP existed among the different genotypes. Figure S5. GISH analysis of mitotic metaphase chromosomes of TAI 7047, L661, L693 and YU25 using genomic DNA of Th. Intermedium as a probe (green). A TAI 7047, B L661, C L693, D YU25. Chromosomes were counterstained with DAPI (blue). Figure S6. Results demonstrating the high quality and good replication of q-PCR. (A), the melt curve of the q-PCR product during the amplification of WCBP2. (B), The amplification curve shows the consistent crossing points of the three technological replicates of the WCBP2 gene and the reference gene GAPDH. This chart shows L661 at 0 h. (ZIP 837 kb
    corecore