6,244 research outputs found
Molecular basis of glutamate toxicity in retinal ganglion cells
Loss of retinal ganglion cells (RGCs) is a hallmark of many ophthalmic diseases including glaucoma, retinal ischemia due to central artery occlusion, anterior ischemic optic neuropathy and may be significant in optic neuritis, optic nerve trauma, and AIDS. Recent research indicates that neurotoxicity is caused by excessive stimulation of receptors for excitatory amino acids (EAAs). In particular, the amino acid glutamate has been shown to act as a neurotoxin which exerts its toxic effect on RGCs predominantly through the N-methyl-d-aspartate (NMDA) subtype of glutamate receptor. NMDA-receptor-mediated toxicity in RGCs is dependent on the influx of extracellular Ca2+. The increase in [Ca2+]i acts as a second messenger that sets in motion the cascade leading to eventual cell death. Glutamate stimulates its own release in a positive feedback loop by its interaction with the non-NMDA receptor subtypes. Ca2+-induced Ca2+ release and further influx of Ca2+ through voltage-gated Ca2+ channels after glutamate-induced depolarization contribute to glutamate toxicity. In vitro and in vivo studies suggest that the use of selective NMDA receptor antagonists or Ca2+ channel blockers should be useful in preventing or at least abating neuronal loss in the retina. Of particular importance for future clinical use of NMDA receptor antagonists in the treatment of acute vascular insults is the finding that some drugs can prevent glutamate-induced neurotoxicity, even when administered a few hours after the onset of retinal ischemia
Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders
Significance: Physiological concentrations of nitric oxide (NOā¢) and related reactive nitrogen species (RNS) mediate multiple signaling pathways in the nervous system. During inflammaging (chronic low-grade inflammation associated with aging) and in neurodegenerative diseases, excessive RNS contribute to synaptic and neuronal loss. "NO signaling" in both health and disease is largely mediated through protein S-nitrosylation (SNO), a redox-based posttranslational modification with "NO" (possibly in the form of nitrosonium cation [NO+]) reacting with cysteine thiol (or, more properly, thiolate anion [R-S-]). Recent Advances: Emerging evidence suggests that S-nitrosylation occurs predominantly via transnitros(yl)ation. Mechanistically, the reaction involves thiolate anion, as a nucleophile, performing a reversible nucleophilic attack on a nitroso nitrogen to form an SNO-protein adduct. Prior studies identified transnitrosylation reactions between glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-nuclear proteins, thioredoxin-caspase-3, and X-linked inhibitor of apoptosis (XIAP)-caspase-3. Recently, we discovered that enzymes previously thought to act in completely disparate biochemical pathways can transnitrosylate one another during inflammaging in an unexpected manner to mediate neurodegeneration. Accordingly, we reported a concerted tricomponent transnitrosylation network from Uch-L1-to-Cdk5-to-Drp1 that mediates synaptic damage in Alzheimer's disease. Critical Issues: Transnitrosylation represents a critical chemical mechanism for transduction of redox-mediated events to distinct subsets of proteins. Although thousands of thiol-containing proteins undergo S-nitrosylation, how transnitrosylation regulates a myriad of neuronal attributes is just now being uncovered. In this review, we highlight recent progress in the study of the chemical biology of transnitrosylation between proteins as a mechanism of disease. Future Directions: We discuss future areas of study of protein transnitrosylation that link our understanding of aging, inflammation, and neurodegenerative diseases. Antioxid. Redox Signal. 35, 531-550
Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress
Protein S-nitrosylation modulates important cellular processes, including neurotransmission, vasodilation, proliferation, and apoptosis in various cell types. We have previously reported that protein disulfide isomerase (PDI) is S-nitrosylated in brains of patients with sporadic neurodegenerative diseases. This modification inhibits PDI enzymatic activity and consequently leads to the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) lumen. Here, we describe S-nitrosylation of additional ER pathways that affect the unfolded protein response (UPR) in cell-based models of Parkinson's disease (PD). We demonstrate that nitric oxide (NO) can S-nitrosylate the ER stress sensors IRE1Ī± and PERK. While S-nitrosylation of IRE1Ī± inhibited its ribonuclease activity, S-nitrosylation of PERK activated its kinase activity and downstream phosphorylation/inactivation or eIF2Ī±. Site-directed mutagenesis of IRE1Ī±(Cys931) prevented S-nitrosylation and inhibition of its ribonuclease activity, indicating that Cys931 is the predominant site of S-nitrosylation. Importantly, cells overexpressing mutant IRE1Ī±(C931S) were resistant to NO-induced damage. Our findings show that nitrosative stress leads to dysfunctional ER stress signaling, thus contributing to neuronal cell death
Redox Regulation of Protein Function via Cysteine S-Nitrosylation and Its Relevance to Neurodegenerative Diseases
Debilitating neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), can be attributed to neuronal cell damage in specific brain regions. An important hallmark of these diseases is increased oxidative and nitrosative stress that occurs via overproduction of highly reactive free radicals known as reactive oxygen species (ROS) and reactive nitrogen species (RNS). These molecules are normally removed by cellular antioxidant systems. Under physiological conditions, ROS/RNS are present at low levels, mediating several neurotrophic and neuroprotective signaling pathways. In contrast, under pathological conditions, there is a pronounced increase in ROS/RNS generation, impairing normal neurological function. Nitric oxide (NO) is one such molecule that functions as a signaling agent under physiological conditions but causes nitrosative stress under pathological conditions due to its enhanced production. As first reported by our group and colleagues, the toxic effects of NO can be in part attributed to thiol S-nitrosylation, a posttranslational modification of cysteine residues on specific proteins. Here, we review several reports appearing over the past decade showing that S-nitrosylation of an increasing number of proteins compromises important cellular functions, including mitochondrial dynamics, endoplasmic reticulum (ER) protein folding, and signal transduction, thereby promoting synaptic damage, cell death, and neurodegeneration
Ultrafast rotation in an amphidynamic crystalline metal organic framework
Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn4O cubic lattice. Using spin-lattice relaxation 1H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3-80 K, we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol-1 These results were confirmed with 2H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. The ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase
Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation
<p>Abstract</p> <p>Background</p> <p>Accumulation of aberrant proteins to form Lewy bodies (LBs) is a hallmark of Parkinson's disease (PD). Ubiquitination-mediated degradation of aberrant, misfolded proteins is critical for maintaining normal cell function. Emerging evidence suggests that oxidative/nitrosative stress compromises the precisely-regulated network of ubiquitination in PD, particularly affecting parkin E3 ligase activity, and contributes to the accumulation of toxic proteins and neuronal cell death.</p> <p>Results</p> <p>To gain insight into the mechanism whereby cell stress alters parkin-mediated ubiquitination and LB formation, we investigated the effect of oxidative stress. We found significant increases in oxidation (sulfonation) and subsequent aggregation of parkin in SH-SY5Y cells exposed to the mitochondrial complex I inhibitor 1-methyl-4-phenlypyridinium (MPP<sup><b>+</b></sup>), representing an <it>in vitro </it>cell-based PD model. Exposure of these cells to direct oxidation via pathological doses of H<sub>2</sub>O<sub>2 </sub>induced a vicious cycle of increased followed by decreased parkin E3 ligase activity, similar to that previously reported following S-nitrosylation of parkin. Pre-incubation with catalase attenuated H<sub>2</sub>O<sub>2 </sub>accumulation, parkin sulfonation, and parkin aggregation. Mass spectrometry (MS) analysis revealed that H<sub>2</sub>O<sub>2 </sub>reacted with specific cysteine residues of parkin, resulting in sulfination/sulfonation in regions of the protein similar to those affected by parkin mutations in hereditary forms of PD. Immunohistochemistry or gel electrophoresis revealed an increase in aggregated parkin in rats and primates exposed to mitochondrial complex I inhibitors, as well as in postmortem human brain from patients with PD with LBs.</p> <p>Conclusion</p> <p>These findings show that oxidative stress alters parkin E3 ligase activity, leading to dysfunction of the ubiquitin-proteasome system and potentially contributing to LB formation.</p
NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration
<p>Abstract</p> <p>Background</p> <p>The phosphatase PTEN governs the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway which is arguably the most important pro-survival pathway in neurons. Recently, PTEN has also been implicated in multiple important CNS functions such as neuronal differentiation, plasticity, injury and drug addiction. It has been reported that loss of PTEN protein, accompanied by Akt activation, occurs under excitotoxic conditions (stroke) as well as in Alzheimer's (AD) brains. However the molecular signals and mechanism underlying PTEN loss are unknown.</p> <p>Results</p> <p>In this study, we investigated redox regulation of PTEN, namely S-nitrosylation, a covalent modification of cysteine residues by nitric oxide (NO), and H<sub>2</sub>O<sub>2</sub>-mediated oxidation. We found that S-nitrosylation of PTEN was markedly elevated in brains in the early stages of AD (MCI). Surprisingly, there was no increase in the H<sub>2</sub>O<sub>2</sub>-mediated oxidation of PTEN, a modification common in cancer cell types, in the MCI/AD brains as compared to normal aged control. Using several cultured neuronal models, we further demonstrate that S-nitrosylation, in conjunction with NO-mediated enhanced ubiquitination, regulates both the lipid phosphatase activity and protein stability of PTEN. S-nitrosylation and oxidation occur on overlapping and distinct Cys residues of PTEN. The NO signal induces PTEN protein degradation via the ubiquitin-proteasome system (UPS) through NEDD4-1-mediated ubiquitination.</p> <p>Conclusion</p> <p>This study demonstrates for the first time that NO-mediated redox regulation is the mechanism of PTEN protein degradation, which is distinguished from the H<sub>2</sub>O<sub>2</sub>-mediated PTEN oxidation, known to only inactivate the enzyme. This novel regulatory mechanism likely accounts for the PTEN loss observed in neurodegeneration such as in AD, in which NO plays a critical pathophysiological role.</p
Roles of KChIP1 in the regulation of GABA-mediated transmission and behavioral anxiety
K+ channel interacting protein 1 (KChIP1) is a neuronal calcium sensor (NCS) protein that interacts with multiple intracellular molecules. Its physiological function, however, remains largely unknown. We report that KChIP1 is predominantly expressed at GABAergic synapses of a subset of parvalbumin-positive neurons in the brain. Forced expression of KChIP1 in cultured hippocampal neurons increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs), reduced paired pulse facilitation of autaptic IPSCs, and decreases potassium current density. Furthermore, genetic ablation of KChIP1 potentiated potassium current density in neurons and caused a robust enhancement of anxiety-like behavior in mice. Our study suggests that KChIP1 is a synaptic protein that regulates behavioral anxiety by modulating inhibitory synaptic transmission, and drugs that act on KChIP1 may help to treat patients with mood disorders including anxiety
Recommended from our members
S-Nitrosylation-mediated dysfunction of TCA cycle enzymes in synucleinopathy studied in postmortem human brains and hiPSC-derived neurons
A causal relationship between mitochondrial metabolic dysfunction and neurodegeneration has been implicated in synucleinopathies, including Parkinson disease (PD) and Lewy body dementia (LBD), but underlying mechanisms are not fully understood. Here, using human induced pluripotent stem cell (hiPSC)-derived neurons with mutation in the gene encoding Ī±-synuclein (Ī±Syn), we report the presence of aberrantly S-nitrosylated proteins, including tricarboxylic acid (TCA) cycle enzymes, resulting in activity inhibition assessed by carbon-labeled metabolic flux experiments. This inhibition principally affects Ī±-ketoglutarate dehydrogenase/succinyl coenzyme-A synthetase, metabolizing Ī±-ketoglutarate to succinate. Notably, human LBD brain manifests a similar pattern of aberrantly S-nitrosylated TCA enzymes, indicating the pathophysiological relevance of these results. Inhibition of mitochondrial energy metabolism in neurons is known to compromise dendritic length and synaptic integrity, eventually leading to neuronal cell death. Our evidence indicates that aberrant S-nitrosylation of TCA cycle enzymes contributes to this bioenergetic failure
- ā¦