698 research outputs found

    Features of Muon Arrival Time Distributions of High Energy EAS at Large Distances From the Shower Axis

    Get PDF
    In view of the current efforts to extend the KASCADE experiment (KASCADE-Grande) for observations of Extensive Air Showers (EAS) of primary energies up to 1 EeV, the features of muon arrival time distributions and their correlations with other observable EAS quantities have been scrutinised on basis of high-energy EAS, simulated with the Monte Carlo code CORSIKA and using in general the QGSJET model as generator. Methodically various correlations of adequately defined arrival time parameters with other EAS parameters have been investigated by invoking non-parametric methods for the analysis of multivariate distributions, studying the classification and misclassification probabilities of various observable sets. It turns out that adding the arrival time information and the multiplicity of muons spanning the observed time distributions has distinct effects improving the mass discrimination. A further outcome of the studies is the feature that for the considered ranges of primary energies and of distances from the shower axis the discrimination power of global arrival time distributions referring to the arrival time of the shower core is only marginally enhanced as compared to local distributions referring to the arrival of the locally first muon.Comment: 24 pages, Journal Physics G accepte

    Ultra high energy neutrinos from gamma ray bursts

    Full text link
    Protons accelerated to high energies in the relativistic shocks that generate gamma ray bursts photoproduce pions, and then neutrinos in situ. I show that ultra high energy neutrinos (> 10^19 eV) are produced during the burst and the afterglow. A larger flux, also from bursts, is generated via photoproduction off CMBR photons in flight but is not correlated with currently observable bursts, appearing as a bright background. Adiabatic/synchrotron losses from protons/pions/muons are negligible. Temporal and directional coincidences with bursts detected by satellites can separate correlated neutrinos from the background.Comment: Adiabatic/synchrotron losses from protons/pions/muons shown to be negligible. Accepted for publication in Phys. Rev. Letters. RevTe

    On the Discovery of the GZK Cut-off

    Full text link
    The recent claim of the '5 sigma' observation of the Greisen and Zatzepin and Kuzmin cut-off by the HiRes group based on their nine years data is a significant step toward the eventual solution of the one of the most intriguing questions which has been present in physics for more than forty years. However the word 'significance' is used in the mentioned paper in the sense which is not quite obvious. In the present paper we persuade that this claim is a little premature.Comment: 10 page

    Search for Sub-TeV Gamma Rays Coincident with BATSE Gamma Ray Bursts

    Full text link
    Project GRAND is a 100m x 100m air shower array of proportional wire chambers (PWCs). There are 64 stations each with eight 1.29 m^2 PWC planes arranged in four orthogonal pairs placed vertically above one another to geometrically measure the angles of charged secondaries. A steel plate above the bottom pair of PWCs differentiates muons (which pass undeflected through the steel) from non-penetrating particles. FLUKA Monte Carlo studies show that a TeV gamma ray striking the atmosphere at normal incidence produces 0.23 muons which reach ground level where their angles and identities are measured. Thus, paradoxically, secondary muons are used as a signature for gamma ray primaries. The data are examined for possible angular and time coincidences with eight gamma ray bursts (GRBs) detected by BATSE. Seven of the GRBs were selected because of their good acceptance by GRAND and high BATSE Fluence. The eighth GRB was added due to its possible coincident detection by Milagrito. For each of the eight candidate GRBs, the number of excess counts during the BATSE T90 time interval and within plus or minus five degrees of BATSE's direction was obtained. The highest statistical significance reported in this paper (2.7 sigma) is for the event that was predicted to be the most likely to be observed (GRB 971110).Comment: To be presented at the XXVIII International Cosmic Ray Conference, Tsukuba, Japa

    Large Electric Dipole Moments of Heavy Neutrinos

    Get PDF
    In many models of CP violation, the electric dipole moment (EDM) of a heavy charged or neutral lepton could be very large. We present an explicit model in which a heavy neutrino EDM can be as large as 10−1610^{-16} e-cm, or even a factor of ten larger if fine-tuning is allowed, and use an effective field theory argument to show that this result is fairly robust. We then look at the production cross section for these neutrinos, and by rederiving the Bethe-Block formula, show that they could leave an ionization track. It is then noted that the first signature of heavy neutrinos with a large EDM would come from e+e−→NˉNγe^+e^-\to \bar{N}N\gamma, leading to a very large rate for single photon plus missing energy events, and the rate and angular distribution are found. Finally, we look at some astrophysical consequences, including whether these neutrinos could constitute the UHE cosmic rays and whether their decays in the early universe could generate a net lepton asymmetry.Comment: 22 pages, 9 figure

    Strangelets as Cosmic Rays beyond the Greisen-Zatsepin-Kuzmin Cutoff

    Full text link
    Strangelets (stable lumps of quark matter) can have masses and charges much higher than those of nuclei, but have very low charge-to-mass ratios. This is confirmed in a relativistic Thomas-Fermi model. The high charge allows astrophysical strangelet acceleration to energies orders of magnitude higher than for protons. In addition, strangelets are much less susceptible to the interactions with the cosmic microwave background that suppress the flux of cosmic ray protons and nuclei above energies of 101910^{19}--102010^{20} eV (the GZK-cutoff). This makes strangelets an interesting possibility for explaining ultra-high energy cosmic rays.Comment: Physical Review Letters (in press

    Consequences of parton's saturation and string's percolation on the developments of cosmic ray showers

    Get PDF
    At high gluon or string densities, gluons' saturation or the strong interaction among strings, either forming colour ropes or giving rise to string's percolation, induces a strong suppression in the particle multiplicities produced at high energy. This suppression implies important modifications on cosmic ray shower development. In particular, it is shown that it affects the depth of maximum, the elongation rate, and the behaviour of the number of muons at energies around 10^{17}-10^{18} eV. The existing cosmic ray data point out in the same direction.Comment: Latex. 10 pages 2 figure

    Dynamic inundation simulation of storm water interaction between sewer system and overland flows

    Get PDF
    Copyright © 2002 Taylor & FrancisThis is the Author's Accepted Manuscript of an article published in the Journal of the Chinese Institute of Engineers (2002), available online at: http://www.tandfonline.com/10.1080/02533839.2002.9670691An improved urban inundation model, coupling a 2D non‐inertia overland flow model with a storm water management model, is adopted to simulate inundation in urban areas. The model computes, not only the overland runoff and the water overflow through manholes where surface runoff exceeds the capacity of storm sewers, but also the bidirectional flow interactions between sewers and overland runoff. The model was verified by a typhoon event in Nov. 2000, which resulted in serious inundation in the Mucha area of Taipei City. The result shows that the present model indeed improves simulation accuracy over the earlier model, and can be used to provide a more reliable flood mitigation design

    Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation

    Get PDF
    Acute myeloid leukemia (AML) involves a block in terminal differentiation of the myeloid lineage and uncontrolled proliferation of a progenitor state. Using phorbol myristate acetate (PMA), it is possible to overcome this block in THP-1 cells (an M5-AML containing the MLL-MLLT3 fusion), resulting in differentiation to an adherent monocytic phenotype. As part of FANTOM4, we used microarrays to identify 23 microRNAs that are regulated by PMA. We identify four PMA-induced micro- RNAs (mir-155, mir-222, mir-424 and mir-503) that when overexpressed cause cell-cycle arrest and partial differentiation and when used in combination induce additional changes not seen by any individual microRNA. We further characterize these prodifferentiative microRNAs and show that mir-155 and mir-222 induce G2 arrest and apoptosis, respectively. We find mir-424 and mir-503 are derived from a polycistronic precursor mir-424-503 that is under repression by the MLL-MLLT3 leukemogenic fusion. Both of these microRNAs directly target cell-cycle regulators and induce G1 cell-cycle arrest when overexpressed in THP-1. We also find that the pro-differentiative mir-424 and mir-503 downregulate the anti-differentiative mir-9 by targeting a site in its primary transcript. Our study highlights the combinatorial effects of multiple microRNAs within cellular systems.Comment: 45 pages 5 figure
    • 

    corecore