16 research outputs found

    First Study of Combined Blazar Light Curves with FACT and HAWC

    Full text link
    For studying variable sources like blazars, it is crucial to achieve unbiased monitoring, either with dedicated telescopes in pointing mode or survey instruments. At TeV energies, the High Altitude Water Cherenkov (HAWC) observatory monitors approximately two thirds of the sky every day. It uses the water Cherenkov technique, which provides an excellent duty cycle independent of weather and season. The First G-APD Cherenkov Telescope (FACT) monitors a small sample of sources with better sensitivity, using the imaging air Cherenkov technique. Thanks to its camera with silicon-based photosensors, FACT features an excellent detector performance and stability and extends its observations to times with strong moonlight, increasing the duty cycle compared to other imaging air Cherenkov telescopes. As FACT and HAWC have overlapping energy ranges, a joint study can exploit the longer daily coverage given that the observatories' locations are offset by 5.3 hours. Furthermore, the better sensitivity of FACT adds a finer resolution of features on hour-long time scales, while the continuous duty cycle of HAWC ensures evenly sampled long-term coverage. Thus, the two instruments complement each other to provide a more complete picture of blazar variability. In this presentation, the first joint study of light curves from the two instruments will be shown, correlating long-term measurements with daily sampling between air and water Cherenkov telescopes. The presented results focus on the study of the variability of the bright blazars Mrk 421 and Mrk 501 during the last two years featuring various flaring activities.Comment: 6 pages, 2 figures. Contribution to the 6th International Symposium on High Energy Gamma-Ray Astronomy (Gamma2016), Heidelberg, Germany. To be published in the AIP Conference Proceeding

    Contribución al conocimiento de Porosagrotis gypaetina (Guen.) (Lep.:Noctuidae)

    Get PDF
    p.15-22Este trabajo tiene por finalidad brindar una descripcion detallada de los diferentes estados de desarrollo, asi como de los estadios larvales, de Porosagrotis gypaetina (Guen.) y estimar sus principales parametros biologicos. Se trata de una oruga conocida vulgarmente como gusano pardo que frecuenta cultivos de alfalfa, trebol bianco, maiz y girasol y determinadas malezas. Los caracteres considerados para su identificacion fueron, en el huevo: numero y distribucion de costas; en la larva: pigmentacion, distribucion de manchas y cerdas corporales; en la pupa: tamaño, forma y color y caracteristicas del cremaster; y en el adulto: ubicacion y coloracion de maculas y nervaduras alares. La emergencia de imagos alcanzo su maximo en abril y mayo. El periodo embrionario se completo en 22 a 26 dias. Aproximadamente la mitad de las larvas cumplieron su ciclo en 6 estadios y las restantes en 7; la duracion total del periodo larval fue de 134 a 141 dias, sin considerar la forma prepupal e independientemente del numero de estadios. Las orugas permanecieron como prepupas durante la temporada estival (aproximadamente 161 dias). El estado pupal duro 40 a 57 dias. Las observaciones realizadas permiten expresar que, inediante los caracteres descriptos, es factible reconocer la especie a traves no solo de los adultos, sino de sus estados inmaduros. Posee una sola generacion anual; transcurre el inviemo como larva; el daño tipico de corte lo produce a partir del cuarto estadio larval

    Long-term monitoring of bright blazars in the multi-GeV to TeV range with FACT

    Get PDF
    Blazars like Markarian 421 or Markarian 501 are active galactic nuclei (AGN), with their jets orientated towards the observer. They are among the brightest objects in the very high energy (VHE) gamma ray regime (>100 GeV). Their emitted gamma-ray fluxes are extremely variable, with changing activity levels on timescales between minutes, months, and even years. Several questions are part of the current research, such as the question of the emission regions or the engine of the AGN and the particle acceleration. A dedicated longterm monitoring program is necessary to investigate the properties of blazars in detail. A densely sampled and unbiased light curve allows for observation of both high and low states of the sources, and the combination with multi-wavelength observation could contribute to the answer of several questions mentioned above. FACT (First G-APD Cherenkov Telescope) is the first operational telescope using silicon photomultiplier (SiPM, also known as Geigermode—Avalanche Photo Diode, G-APD) as photon detectors. SiPM have a very homogenous and stable longterm performance, and allow operation even during full moon without any filter, leading to a maximal duty cycle for an Imaging Air Cherenkov Telescope (IACT). Hence, FACT is an ideal device for such a longterm monitoring of bright blazars. A small set of sources (e.g., Markarian 421, Markarian 501, 1ES 1959+650, and 1ES 2344+51.4) is currently being monitored. In this contribution, the FACT telescope and the concept of longterm monitoring of bright blazars will be introduced. The results of the monitoring program will be shown, and the advantages of densely sampled and unbiased light curves will be discussed

    Fractional variability—a tool to study blazar variability

    Get PDF
    Active Galactic Nuclei emit radiation over the whole electromagnetic spectrum up to TeV energies. Blazars are one subtype with their jets pointing towards the observer. One of their typical features is extreme variability on timescales, from minutes to years. The fractional variability is an often used parameter for investigating the degree of variability of a light curve. Different detection methods and sensitivities of the instruments result in differently binned data and light curves with gaps. As they can influence the physics interpretation of the broadband variability, the effects of these differences on the fractional variability need to be studied. In this paper, we study the systematic effects of completeness in time coverage and the sampling rate. Using public data from instruments monitoring blazars in various energy ranges, we study the variability of the bright TeV blazars Mrk 421 and Mrk 501 over the electromagnetic spectrum, taking into account the systematic effects, and compare our findings with previous results. Especially in the TeV range, the fractional variability is higher than in previous studies, which can be explained by the much longer (seven years compared to few weeks) and more complete data sample

    MAGIC and H.E.S.S. detect VHE gamma rays from the blazar OT081 for the first time: a deep multiwavelength study

    Get PDF
    https://pos.sissa.it/395/815/pdfPublished versio

    Flux States of Active Galactic Nuclei

    Get PDF
    Blazars are known to show variability on time scales from minutes to years covering a wide range of flux states. Studying the flux distribution of a source allows for various insights. The shape of the flux distribution can provide information on the nature of the underlying variability processes. The level of a possible quiescent state can be derived from the main part of the distribution that can be described by a Gaussian distribution. Dividing the flux states into quiescent and active, the duty cycle of a source can be calculated. Finally, this allows alerting the multi-wavelength and multi-messenger community in case a source is in an active state. To get consistent and conclusive results from flux distributions, unbiased long-term observations are crucial. Only like this is a complete picture of the variability and flux states, e.g., an all-time quiescent state, possible. In seven years of monitoring of bright TeV blazars, the first G-APD Cherenkov telescope (FACT) has collected a total of more than 11,700 hours of physics data with 1500 hours to 3000 hours per source for Mrk 421, Mrk 501, 1ES 1959+650, and 1ES 2344+51

    Fractional Variability—A Tool to Study Blazar Variability

    Get PDF
    Active Galactic Nuclei emit radiation over the whole electromagnetic spectrum up to TeV energies. Blazars are one subtype with their jets pointing towards the observer. One of their typical features is extreme variability on timescales, from minutes to years. The fractional variability is an often used parameter for investigating the degree of variability of a light curve. Different detection methods and sensitivities of the instruments result in differently binned data and light curves with gaps. As they can influence the physics interpretation of the broadband variability, the effects of these differences on the fractional variability need to be studied. In this paper, we study the systematic effects of completeness in time coverage and the sampling rate. Using public data from instruments monitoring blazars in various energy ranges, we study the variability of the bright TeV blazars Mrk 421 and Mrk 501 over the electromagnetic spectrum, taking into account the systematic effects, and compare our findings with previous results. Especially in the TeV range, the fractional variability is higher than in previous studies, which can be explained by the much longer (seven years compared to few weeks) and more complete data sample

    Single Photon Extraction for FACT’s SiPMs allows for Novel IACT Event Representation

    No full text
    Imaging Atmospheric Cherenkov Telescopes provide large gamma-ray collection areas > 10^4 m^2 and successfully probe the high energetic gamma-ray sky by observing extensive air showers during the night. The First G-APD Cherenkov Telescope (FACT) explores silicon based photoelectric converters (called G-APDs or SiPMs) which provide more observation time with strong moonlight, a more stable photon gain over years of observations, and mechanically simpler imaging cameras. So far, the signal extraction methods used for FACT originate from sensors with no intrinsic quantized responses like photomultiplier tubes. This standard signal extraction is successfully used for the long time monitoring of the gamma-ray flux of bright blazars. However, we now challenge our classic signal extraction and explore single photon extraction methods to take advantage of the highly stable and quantized single photon responses of FACT's SiPM sensors. Instead of having one main pulse with one arrival time and one photon equivalent extracted for each pixel, we extract the arrival times of all individual photons in a pixel’s time line which opens up a new dimension in time for representing extensive air showers with an IACT. In this contribution, we will introduce our novel IACT event representation which is a list of single photon arrival times for each pixel (Photon-Stream). We will discuss our single photon extractor, its performance and its limitations. We will present example events where we identify individual, single air shower Cherenkov photons in the pool of individual, single night sky background photons.ISSN:1824-803

    FACT – Performance of the First Cherenkov Telescope Observing with SiPMs

    No full text
    The First G-APD Cherenkov Telescope (FACT) is pioneering the usage of silicon photo mul- tipliers (SiPMs also known as G-APDs) for the imaging atmospheric Cherenkov technique. It is located at the Observatorio Roque de los Muchachos on the Canary island of La Palma. Since first light in October 2011, it is monitoring bright TeV blazars in the northern sky. By now, FACT is the only imaging atmospheric Cherenkov telescope operating with S I PMs on a nightly basis. Over the course of the last five years, FACT has been demonstrating their reliability and excel- lent performance. Moreover, their robustness allowed for an increase of the duty cycle including nights with strong moon light without the need for UV-filters. In this contribution, we will present the performance of the first Cherenkov telescope using solid state photo sensors, which was determined in analysis of data from Crab Nebula, the so called standard candle in gamma-ray astronomy. The presented analysis chain utilizes modern data mining methods and unfolding techniques to obtain the energy spectrum of this source. The characteristical results of such an analysis will be reported providing, e. g., the angular and energy resolution of FACT, as well as, the energy spectrum of the Crab Nebula. Furthermore, these results are discussed in the context of the performance of coexisting Cherenkov telescopes

    Higher Order Temperature Dependence of SiPM used in FACT

    No full text
    Solid state photosensors, usually called SiPM or G-APD, seem ideal devices to be used in Imaging Atmospheric Cherenkov Telescopes (IACT). Nevertheless, their temperature dependence poses questions about their suitability in the harsh environment intrinsic to the operation of IACTs. While detailed measurements in the laboratory are possible with some sample sensors, limited data about the performance and uniformity of large samples exist. The First G-APD Cherenkov Telescope (FACT) is pioneering the usage of SiPMs for IACTs. Its camera consists of 1440 SiPMs and it is operated since October 2011 each night when observation conditions permit. Using no temperature stabilization system for the sensors, their temperature is closely coupled to the outside temperature that can change by more than 20 ∘C. While the strong temperature dependence of the gain of the sensors was shown to be easily compensated by adapting the applied voltage, there could also be higher order temperature dependencies of parameters like optical cross-talk, after-pulsing and wavelength dependent photon-detection efficiency. While external calibration devices could be used, one would have to proof that these devices do not have their own temperature dependencies. Instead, we use the constant flux of high energetic cosmic ray particles as calibration device. Their measured flux can depend on variable absorption and scattering of Cherenkov light e.g. due to dust and clouds, as well as on seasonal variations of the atmosphere. Nevertheless, using data sets where the temperature drastically changed within short time periods, we show that temperature dependencies of FACT, including the SiPMs, are well under control.ISSN:1824-803
    corecore