1,292 research outputs found
A precisely controlled, low range humidity system
Development of environmental control system for determining effects of relative humidity and dry heat on inactivation of microorganism
Numerical Study of Wave Propagation in Uniaxially Anisotropic Lorentzian Backward Wave Slabs
The propagation and refraction of a cylindrical wave created by a line
current through a slab of backward wave medium, also called left-handed medium,
is numerically studied with FDTD. The slab is assumed to be uniaxially
anisotropic. Several sets of constitutive parameters are considered and
comparisons with theoretical results are made. Electric field distributions are
studied inside and behind the slab. It is found that the shape of the
wavefronts and the regions of real and complex wave vectors are in agreement
with theoretical results.Comment: 6 pages, figure
Thermoradiation inactivation of naturally occurring organisms in soil
Samples of soil collected from Kennedy Space Center near spacecraft assembly facilities were found to contain microorganisms very resistant to conventional sterilization techniques. The inactivation behavior of the naturally occurring spores in soil was investigated using dry heat and ionizing radiation, first separately, then in combination. Dry heat inactivation rates of spores were determined for 105 and 125 C. Radiation inactivation rates were determined for dose rates of 660 and 76 krad/hr at 25 C. Simultaneous combinations of heat and radiation were then investigated at 105, 110, 115, 120, and 125 C. Combined treatment was found to be highly synergistic requiring greatly reduced radiation doses to accomplish sterilization
Design requirements for laminar airflow clean rooms and devices
Laminar airflow and airborne contamination control concepts with clean room specifications and laminar flow facility design
The development of two closely controlled humidity systems
Development of two closely controlled humidity systems for microbiolog
A study of the effectiveness of thermoradiation sterilization
Effectiveness of thermoradiation sterilization of spacecraft hardwar
Inverse proximity effect in superconductors near ferromagnetic material
We study the electronic density of states in a mesoscopic superconductor near
a transparent interface with a ferromagnetic metal. In our tunnel spectroscopy
experiment, a substantial density of states is observed at sub-gap energies
close to a ferromagnet. We compare our data with detailed calculations based on
the Usadel equation, where the effect of the ferromagnet is treated as an
effective boundary condition. We achieve an excellent agreement with theory
when non-ideal quality of the interface is taken into account.Comment: revised, 7 pages, 3 figure
Observation of shot-noise-induced asymmetry in the Coulomb blockaded Josephson junction
We have investigated the influence of shot noise on the IV-curves of a single
mesoscopic Josephson junction. We observe a linear enhancement of zero-bias
conductance of the Josephson junction with increasing shot noise power.
Moreover, the IV-curves become increasingly asymmetric. Our analysis on the
asymmetry shows that the Coulomb blockade of Cooper pairs is strongly
influenced by the non-Gaussian character of the shot noise.Comment: 4 pages, 5 figures, RevTE
Theory of the propagation of coupled waves in arbitrarily-inhomogeneous stratified media
We generalize the invariant imbedding theory of the wave propagation and
derive new invariant imbedding equations for the propagation of arbitrary
number of coupled waves of any kind in arbitrarily-inhomogeneous stratified
media, where the wave equations are effectively one-dimensional. By doing this,
we transform the original boundary value problem of coupled second-order
differential equations to an initial value problem of coupled first-order
differential equations, which makes the numerical solution of the coupled wave
equations much easier. Using the invariant imbedding equations, we are able to
calculate the matrix reflection and transmission coefficients and the wave
amplitudes inside the inhomogeneous media exactly and efficiently. We establish
the validity and the usefulness of our results by applying them to the
propagation of circularly-polarized electromagnetic waves in one-dimensional
photonic crystals made of isotropic chiral media. We find that there are three
kinds of bandgaps in these structures and clarify the nature of these bandgaps
by exact calculations.Comment: 7 pages, 1 figure, to appear in Europhys. Let
- …