8 research outputs found
Regulatory mechanisms of mitochondrial function and cardiac aging
Abstract
Aging is a major risk factor for cardiovascular diseases (CVDs), the major cause of death worldwide. Cardiac myocytes, which hold the most abundant mitochondrial population, are terminally differentiated cells with diminished regenerative capacity in the adult. Cardiomyocyte mitochondrial dysfunction is a characteristic feature of the aging heart and one out of the nine features of cellular aging. Aging and cardiac pathologies are also associated with increased senescence in the heart. However, the cause and consequences of cardiac senescence during aging or in cardiac pathologies are mostly unrecognized. Further, despite recent advancement in anti-senescence therapy, the targeted cell type and the effect on cardiac structure and function have been largely overlooked. The unique cellular composition of the heart, and especially the functional properties of cardiomyocytes, need to be considered when designing therapeutics to target cardiac aging. Here we review recent findings regarding key factors regulating cell senescence, mitochondrial health as well as cardiomyocyte rejuvenation
miR-1468-3p promotes agingârelated cardiac fibrosis
Abstract
Non-coding microRNAs (miRNAs) are powerful regulators of gene expression and critically involved in cardiovascular pathophysiology. The aim of the current study was to identify miRNAs regulating cardiac fibrosis. Cardiac samples of age-matched control subjects and sudden cardiac death (SCD) victims with primary myocardial fibrosis (PMF) were subjected to miRNA profiling. Old SCD victims with PMF and healthy aged human hearts showed increased expression of miR-1468-3p. In vitro studies in human cardiac fibroblasts showed that augmenting miR-1468-3p levels induces collagen deposition and cell metabolic activity and enhances collagen 1, connective tissue growth factor, and periostin expression. In addition, miR-1468-3p promotes cellular senescence with increased senescence-associated β-galactosidase activity and increased expression of p53 and p16. AntimiR-1468-3p antagonized transforming growth factor β1 (TGF-β1)-induced collagen deposition and metabolic activity. Mechanistically, mimic-1468-3p enhanced p38 phosphorylation, while antimiR-1468-3p decreased TGF-β1-induced p38 activation and abolished p38-induced collagen deposition. RNA sequencing analysis, a computational prediction model, and qPCR analysis identified dual-specificity phosphatases (DUSPs) as miR-1468-3p target genes, and regulation of DUSP1 by miR-1468-3p was confirmed with a dual-luciferase reporter assay. In conclusion, miR-1468-3p promotes cardiac fibrosis by enhancing TGF-β1-p38 signaling. Targeting miR-1468-3p in the older population may be of therapeutic interest to reduce cardiac fibrosis
Wnt11 in regulation of physiological and pathological cardiac growth
Abstract
Wnt11 regulates early cardiac development and left ventricular compaction in the heart, but it is not known how Wnt11 regulates postnatal cardiac maturation and response to cardiac stress in the adult heart. We studied cell proliferation/maturation in postnatal and adolescent Wnt11 deficient (Wnt11â/â) heart and subjected adult mice with partial (Wnt11+/â) and complete Wnt11 (Wnt11â/â) deficiency to cardiac pressure overload. In addition, we subjected primary cardiomyocytes to recombinant Wnt proteins to study their effect on cardiomyocyte growth. Wnt11 deficiency did not affect cardiomyocyte proliferation or maturation in the postnatal or adolescent heart. However, Wnt11 deficiency led to enlarged heart phenotype that was not accompanied by significant hypertrophy of individual cardiomyocytes. Analysis of stressed adult hearts from wild-type mice showed a progressive decrease in Wnt11 expression in response to pressure overload. When studied in experimental cardiac pressure overload, Wnt11 deficiency did not exacerbate cardiac hypertrophy or remodeling and cardiac function remained identical between the genotypes. When subjecting cardiomyocytes to hypertrophic stimulus, the presence of recombinant Wnt11 together with Wnt5a reduced protein synthesis. In conclusion, Wnt11 deficiency does not affect postnatal cardiomyocyte proliferation but leads to cardiac growth. Interestingly, Wnt11 deficiency alone does not substantially modulate hypertrophic response to pressure overload in vivo. Wnt11 may require cooperation with other noncanonical Wnt proteins to regulate hypertrophic response under stress
Systemic blockade of ACVR2B ligands attenuates muscle wasting in ischemic heart failure without compromising cardiac function
Abstract
Signaling through activin receptors regulates skeletal muscle mass and activin receptor 2B (ACVR2B) ligands are also suggested to participate in myocardial infarction (MI) pathology in the heart. In this study, we determined the effect of systemic blockade of ACVR2B ligands on cardiac function in experimental MI, and defined its efficacy to revert muscle wasting in ischemic heart failure (HF). Mice were treated with soluble ACVR2B decoy receptor (ACVR2BâFc) to study its effect on postâMI cardiac remodeling and on later HF. Cardiac function was determined with echocardiography, and myocardium analyzed with histological and biochemical methods for hypertrophy and fibrosis. Pharmacological blockade of ACVR2B ligands did not rescue the heart from ischemic injury or alleviate postâMI remodeling and ischemic HF. Collectively, ACVR2BâFc did not affect cardiomyocyte hypertrophy, fibrosis, angiogenesis, nor factors associated with cardiac regeneration except modification of certain genes involved in metabolism or cell growth/survival. ACVR2BâFc, however, was able to reduce skeletal muscle wasting in chronic ischemic HF, accompanied by reduced LC3II as a marker of autophagy and increased mTOR signaling and Cited4 expression as markers of physiological hypertrophy in quadriceps muscle. Our results ascertain pharmacological blockade of ACVR2B ligands as a possible therapy for skeletal muscle wasting in ischemic HF. Pharmacological blockade of ACVR2B ligands preserved myofiber size in ischemic HF, but did not compromise cardiac function nor exacerbate cardiac remodeling after ischemic injury
Endothelin-1 is associated with mortality that can be attenuated with high intensity statin therapy in patients with stable coronary artery disease
Abstract
Background: All coronary artery disease (CAD) patients do not benefit equally of secondary prevention. Individualized intensity of drug therapy is currently implemented in guidelines for CAD and diabetes. Novel biomarkers are needed to identify patient subgroups potentially benefitting from individual therapy. This study aimed to investigate endothelin-1 (ET-1) as a biomarker for increased risk of adverse events and to evaluate if medication could alleviate the risks in patients with high ET-1.
Methods: A prospective observational cohort study ARTEMIS included 1946 patients with angiographically documented CAD. Blood samples and baseline data were collected at enrollment and the patients were followed for 11 years. Multivariable Cox regression was used to assess the association between circulating ET-1 level and all-cause mortality, cardiovascular (CV) death, non-CV death and sudden cardiac death (SCD).
Results: Here we show an association of circulating ET-1 level with higher risk for all-cause mortality (HR: 2.06; 95% CI 1.5â2.83), CV death, non-CV death and SCD in patients with CAD. Importantly, high intensity statin therapy reduces the risk for all-cause mortality (adjusted HR: 0.05; 95% CI 0.01â0.38) and CV death (adjusted HR: 0.06; 95% CI 0.01â0.44) in patients with high ET-1, but not in patients with low ET-1. High intensity statin therapy does not associate with reduction of risk for non-CV death or SCD.
Conclusions: Our data suggests a prognostic value for high circulating ET-1 in patients with stable CAD. High intensity statin therapy associates with reduction of risk for all-cause mortality and CV death in CAD patients with high ET-1
MiRâ185â5p regulates the development of myocardial fibrosis
Abstract
Background: Cardiac fibrosis stiffens the ventricular wall, predisposes to cardiac arrhythmias and contributes to the development of heart failure. In the present study, our aim was to identify novel miRNAs that regulate the development of cardiac fibrosis and could serve as potential therapeutic targets for myocardial fibrosis.
Methods and results: Analysis for cardiac samples from sudden cardiac death victims with extensive myocardial fibrosis as the primary cause of death identified dysregulation of miRâ185â5p. Analysis of resident cardiac cells from mice subjected to experimental cardiac fibrosis model showed induction of miRâ185â5p expression specifically in cardiac fibroblasts. In vitro, augmenting miRâ185â5p induced collagen production and profibrotic activation in cardiac fibroblasts, whereas inhibition of miRâ185â5p attenuated collagen production. In vivo, targeting miRâ185â5p in mice abolished pressure overload induced cardiac interstitial fibrosis. Mechanistically, miRâ185â5p targets apelin receptor and inhibits the anti-fibrotic effects of apelin. Finally, analysis of left ventricular tissue from patients with severe cardiomyopathy showed an increase in miRâ185â5p expression together with pro-fibrotic TGFâβ1 and collagen I.
Conclusions: Our data show that miRâ185â5p targets apelin receptor and promotes myocardial fibrosis