118,414 research outputs found
Pyrite oxidation under initially neutral pH conditions and in the presence of Acidithiobacillus ferrooxidans and micromolar hydrogen peroxide
Hydrogen peroxide (H2O2) at a micromolar level played a role in the microbial surface oxidation of pyrite crystals under initially neutral pH. When the mineral-bacteria system
was cyclically exposed to 50 ÎŒM H2O2, the colonization of Acidithiobacillus ferrooxidans onto the mineral surface was markedly enhanced, as compared to the control(no added H2O2). This can be attributed to the effects of H2O2 on increasing the roughness of the mineral surfaces, as well as the acidity and Fe2+ concentration at the mineral-solution interfaces. All of these effects tended to create more favourable nanoto micro-scale environments in the mineral surfaces for the cell adsorption. However, higher H2O2 levels inhibited the attachment of cells onto the mineral surfaces, possibly due to the oxidative stress in the bacteria when they approached the mineral surfaces
where high levels of free radicals are present as a result of Fenton-like reactions. The more aggressive nature of H2O2 as an oxidant caused marked surface flaking of the
mineral surface. The XPS results suggest that H2O2 accelerated the oxidation of pyrite-S and consequently facilitated the overall corrosion cycle of pyrite surfaces. This was accompanied by pH drop in the solution in contact with the pyrite cubes
Effective hadronic Lagrangian for charm mesons
An effective hadronic Lagrangian including the charm mesons is introduced to
study their interactions in hadronic matter. Using coupling constants that are
determined either empirically or by the SU(4) symmetry, we have evaluated the
absorption cross sections of and the scattering cross sections of
and by and mesons.Comment: 5 pages, 4 eps figures, presented at Strangeness 2000, Berkeley. Uses
iopart.cl
Crumpling wires in two dimensions
An energy-minimal simulation is proposed to study the patterns and mechanical
properties of elastically crumpled wires in two dimensions. We varied the
bending rigidity and stretching modulus to measure the energy allocation,
size-mass exponent, and the stiffness exponent. The mass exponent is shown to
be universal at value . We also found that the stiffness exponent
is universal, but varies with the plasticity parameters and
. These numerical findings agree excellently with the experimental
results
MEMS flow sensors for nano-fluidic applications
This paper presents micromachined thermal sensors for measuring liquid flow rates in the nanoliter-per-minute range. The sensors use a boron-doped polysilicon thinfilm heater that is embedded in the silicon nitride wall of a microchannel. The boron doping is chosen to increase the heaterâs temperature coefficient of resistance within tolerable noise limits, and the microchannel is suspended from the substrate to improve thermal isolation. The sensors have demonstrated a flow rate resolution below 10 nL/min, as well as the capability for detecting micro bubbles in the liquid. Heat transfer simulation has also been performed to explain the sensor operation and yielded good agreement with experimental data
- âŠ