7 research outputs found
Applications of the electron beam-induced current technique - EBIC
A Medida de Corrente Induzida por Feixe de Elétrons (EBIC - do inglês Electron Beam-induced Current ) é uma técnica focada nas propriedades de transporte dos portadores de carga minoritários em materiais semicondutores, permitindo a medição direta de propriedades elétricas tais como comprimento de difusão e vida média dos portadores, localização de defeitos e caracterização de zonas de depleção em junções p-n. O contraste EBIC depende da eficiência da coleção de corrente na amostra, permitindo assim a direta visualização de características eletricamente ativas. A avaliação da metodologia de medida EBIC foi realizada através da caracterização de amostras de silício tipo-p e tipo-n, e comparação dos resultados com dados da literatura. Uma vez que a profundidade de penetração do feixe de elétrons do MEV na amostra depende da tensão de aceleração utilizada, foram realizadas medidas EBIC com diferentes tensões de aceleração para avaliar a resolução em profundidade da posição de uma junção p-n formada em uma amostra de silício tipo n implantada com íons de Ga com energia de 5 keV.A medida EBIC na seção transversal de células solares é promissora para a caracterização destes dispositivos, considerando a habilidade da técnica de resolver espacialmente regiões menores do que o tamanho de grão típicos (em torno de 1 m), fornecendo informações que seriam inacessíveis através das técnicas usualmente empregadas, como luminescência e curvas I-V, cujos resultados constituem valores médios representativos de escalas maiores do que a da camada ativa das células. Embora imagens EBIC sejam comumente utilizadas para a análise de defeitos em células solares, poucos trabalhos aplicam a técnica para a caracterização de seções transversais de células solares, especialmente células de terceira geração sensibilizadas por corante (DSSC) do tipo estado sólido. A estabilidade dos dispositivos durante as medições foi verificada, apoiando a aplicação da técnica EBIC na caracterização desse tipo de DSSC. Foram analisadas células com diferentes estruturas e espessuras da camada ativa, e caracterizações complementares com as técnicas EDS e GID foram feitas. Observou-se também a possibilidade de utilização da técnica no controle de qualidade e avaliação dos métodos de produção das células. Diferentes métodos de deposição da camada intermediária na estrutura das DSSCs foram testados, de forma a melhorar a adesão insatisfatória desta camada. A técnica EBIC mostrou-se adequada para a distinção entre células com boa adesão desta camada e células com defeitos de construção, permitindo a introdução de melhorias significativas na fabricação destes dispositivos.Electron Beam-induced Current (EBIC) measurement is a technique focused on minority carrier transport properties in semiconductor materials, allowing direct measurements of several electrical properties, such as diffusion lengths and lifetime of the carriers, location of defects and depletion zone characterization in p-n junctions. EBIC contrast depends on the current collection efficiency in the sample, thus permitting a direct visualization of electronically active features. The evaluation of the EBIC measuring methodology was performed by the characterization of p- and n-type silicon and the comparison with results from the literature. Since the penetration depth of the electron beam in a sample depends on its acceleration voltage, the EBIC signal was acquired for variable voltage in order to evaluate the depth-resolved location of the p-n junction formed in the n-type silicon implanted with gallium at 5 keV. Direct measurement of EBIC profiles in cross-sections of solar cells is a promising method for device characterization, considering its spatial resolution is smaller than the typical grain sizes (about 1 m), providing informations otherwise inaccessible by the usually employed techniques, such as luminescence and V-I curves, that yield results that represent mean values of scales larger than that of the cell’s active layer. Although the EBIC imaging method is commonly used for defect analysis of solar cells, very few works have applied the thechnique to 3rd. generation solid state dye sensitized solar cell (DSSC) cross-sections. The stability of the devices during the measurement was verified in this work, supporting the application of the EBIC technique for the characterization of this type of DSSCs. DSSCs with different structures and active layer thickness were analyzed, and complementary characterizations with EDS and GID techniques were performed. The applicability of the EBIC thecnique in device quality control, as well as production methods evaluation was observed. Different deposition methods of the intermediate layer of the DSSC structure were tested, in orde to improve the unsatisfactory adhesion of this layer. EBIC showed to be the adequate thechnique to differentiate between well adhered and poorly constructed DSSCs, allowing to introdenuce significant improvements in the device fabrication
Boletín del Servicio Meteorológico Nacional: Epoca 2ª Año IV Número 231 - 1955 Agosto 19
A presente monografia tem como objetivo principal realizar os procedimentos iniciais para a operacionalização do sistema de medição de corrente induzida por feixe de elétrons (EBIC - do inglês electron beam induced current), recentemente instalado no equipamento de duplo feixe JEOL JIB 4500 do Laboratório de Conformação Nanométrica (LCN) do Instituto de Física da UFRGS. O texto apresenta uma breve revisão da física de semicondutores e dos princípios da microscopia eletrônica de varredura. São apresentados os fundamentos da técnica EBIC e os seus modos de medida e operação. Para exemplificar o tipo de resultados obtidos com esta técnica, amostras de silício foram implantadas com íons de gálio em diferentes energias para a formação de junções p-n, utilizando o feixe de íons do sistema de duplo feixe do LCN. As amostras foram caracterizadas com a técnica de espectroscopia por dispersão em energia (EDS - do inglês energy dispersion spectroscopy). As imagens de microscopia no modo EBIC das amostras implantadas apresentam contrastes associados à presença de defeitos induzidos pela irradiação. Medidas utilizando feixe de elétrons com energia variável indicam o potencial da técnica para quantificar a profundidade em que junções p-n estão localizadas.The present monography aims at performing the inicial procedures to put in operation the electron beam induced-current (EBIC) system, recently installed in the dual beam equipment JEOL JIB 4500 of the Laboratório de Conformação Nanométrica (LCN), from the Insituto de Física - UFRGS. A brief review of semiconductor physics and scanning electron microscopy is made. The foundations of the EBIC technique, methods of measurement and equipment operation are presented. In order to exemplify the kind of result that may be obtained with this technique, silicon samples implanted with Gallium ions with different energies were produced in the dual beam system to generate p-n junctions in different depths. The samples were characterized with energy dispersive spectroscopy (EDS). The EBIC measurements of the implanted samples show contrast associated with the presence of defects induced by irradiation. Measurements using variable electron beam energy indicate the potential of the technique to quantify the depth of the p-n juctions
Applications of the electron beam-induced current technique - EBIC
A Medida de Corrente Induzida por Feixe de Elétrons (EBIC - do inglês Electron Beam-induced Current ) é uma técnica focada nas propriedades de transporte dos portadores de carga minoritários em materiais semicondutores, permitindo a medição direta de propriedades elétricas tais como comprimento de difusão e vida média dos portadores, localização de defeitos e caracterização de zonas de depleção em junções p-n. O contraste EBIC depende da eficiência da coleção de corrente na amostra, permitindo assim a direta visualização de características eletricamente ativas. A avaliação da metodologia de medida EBIC foi realizada através da caracterização de amostras de silício tipo-p e tipo-n, e comparação dos resultados com dados da literatura. Uma vez que a profundidade de penetração do feixe de elétrons do MEV na amostra depende da tensão de aceleração utilizada, foram realizadas medidas EBIC com diferentes tensões de aceleração para avaliar a resolução em profundidade da posição de uma junção p-n formada em uma amostra de silício tipo n implantada com íons de Ga com energia de 5 keV.A medida EBIC na seção transversal de células solares é promissora para a caracterização destes dispositivos, considerando a habilidade da técnica de resolver espacialmente regiões menores do que o tamanho de grão típicos (em torno de 1 m), fornecendo informações que seriam inacessíveis através das técnicas usualmente empregadas, como luminescência e curvas I-V, cujos resultados constituem valores médios representativos de escalas maiores do que a da camada ativa das células. Embora imagens EBIC sejam comumente utilizadas para a análise de defeitos em células solares, poucos trabalhos aplicam a técnica para a caracterização de seções transversais de células solares, especialmente células de terceira geração sensibilizadas por corante (DSSC) do tipo estado sólido. A estabilidade dos dispositivos durante as medições foi verificada, apoiando a aplicação da técnica EBIC na caracterização desse tipo de DSSC. Foram analisadas células com diferentes estruturas e espessuras da camada ativa, e caracterizações complementares com as técnicas EDS e GID foram feitas. Observou-se também a possibilidade de utilização da técnica no controle de qualidade e avaliação dos métodos de produção das células. Diferentes métodos de deposição da camada intermediária na estrutura das DSSCs foram testados, de forma a melhorar a adesão insatisfatória desta camada. A técnica EBIC mostrou-se adequada para a distinção entre células com boa adesão desta camada e células com defeitos de construção, permitindo a introdução de melhorias significativas na fabricação destes dispositivos.Electron Beam-induced Current (EBIC) measurement is a technique focused on minority carrier transport properties in semiconductor materials, allowing direct measurements of several electrical properties, such as diffusion lengths and lifetime of the carriers, location of defects and depletion zone characterization in p-n junctions. EBIC contrast depends on the current collection efficiency in the sample, thus permitting a direct visualization of electronically active features. The evaluation of the EBIC measuring methodology was performed by the characterization of p- and n-type silicon and the comparison with results from the literature. Since the penetration depth of the electron beam in a sample depends on its acceleration voltage, the EBIC signal was acquired for variable voltage in order to evaluate the depth-resolved location of the p-n junction formed in the n-type silicon implanted with gallium at 5 keV. Direct measurement of EBIC profiles in cross-sections of solar cells is a promising method for device characterization, considering its spatial resolution is smaller than the typical grain sizes (about 1 m), providing informations otherwise inaccessible by the usually employed techniques, such as luminescence and V-I curves, that yield results that represent mean values of scales larger than that of the cell’s active layer. Although the EBIC imaging method is commonly used for defect analysis of solar cells, very few works have applied the thechnique to 3rd. generation solid state dye sensitized solar cell (DSSC) cross-sections. The stability of the devices during the measurement was verified in this work, supporting the application of the EBIC technique for the characterization of this type of DSSCs. DSSCs with different structures and active layer thickness were analyzed, and complementary characterizations with EDS and GID techniques were performed. The applicability of the EBIC thecnique in device quality control, as well as production methods evaluation was observed. Different deposition methods of the intermediate layer of the DSSC structure were tested, in orde to improve the unsatisfactory adhesion of this layer. EBIC showed to be the adequate thechnique to differentiate between well adhered and poorly constructed DSSCs, allowing to introdenuce significant improvements in the device fabrication
Multimaterial fiber as a physical simulator of a capillary instability
Abstract Capillary breakup of cores is an exclusive approach to fabricating fiber-integrated optoelectronics and photonics. A physical understanding of this fluid-dynamic process is necessary for yielding the desired solid-state fiber-embedded multimaterial architectures by design rather than by exploratory search. We discover that the nonlinearly complex and, at times, even chaotic capillary breakup of multimaterial fiber cores becomes predictable when the fiber is exposed to the spatiotemporal temperature profile, imposing a viscosity modulation comparable to the breakup wavelength. The profile acts as a notch filter, allowing only a single wavelength out of the continuous spectrum to develop predictably, following Euler-Lagrange dynamics. We argue that this understanding not only enables designing the outcomes of the breakup necessary for turning it into a technology for materializing fiber-embedded functional systems but also positions a multimaterial fiber as a universal physical simulator of capillary instability in viscous threads
Towards Digital Manufacturing of Smart Multimaterial Fibers
Fibers are ubiquitous and usually passive. Optoelectronics realized in a fiber could revolutionize multiple application areas, including biosynthetic and wearable electronics, environmental sensing, and energy harvesting. However, the realization of high-performance electronics in a fiber remains a demanding challenge due to the elusiveness of a material processing strategy that would allow the wrapping of devices made in crystalline semiconductors, such as silicon, into a fiber in an ordered, addressable, and scalable manner. Current fiber-sensor fabrication approaches either are non-scalable or limit the choice of semiconductors to the amorphous ones, such as chalcogenide glasses, inferior to silicon in their electronic performance, resulting in limited bandwidth and sensitivity of such sensors when compared to a standard silicon photodiode. Our group substantiates a universal in-fiber manufacturing of logic circuits and sensory systems analogous to very large-scale integration (VLSI), which enabled the emergence of the modern microprocessor. We develop a versatile hybrid-fabrication methodology that assembles in-fiber material architectures typical to integrated microelectronic devices and systems in silica, silicon, and high-temperature metals. This methodology, dubbed “VLSI for Fibers,” or “VLSI-Fi,” combines 3D printing of preforms, a thermal draw of fibers, and post-draw assembly of fiber-embedded integrated devices by means of material-selective spatially coherent capillary breakup of the fiber cores. We believe that this method will deliver a new class of durable, low cost, pervasive fiber devices, and sensors, enabling integration of fabrics met with human-made objects, such as furniture and apparel, into the Internet of Things (IoT). Furthermore, it will boost innovation in 3D printing, extending the digital manufacturing approach into the nanoelectronics realm
Risk of adverse outcomes in offspring with RT-PCR confirmed prenatal Zika virus exposure: an individual participant data meta-analysis of 13 cohorts in the Zika Brazilian Cohorts ConsortiumResearch in context
Summary: Background: Knowledge regarding the risks associated with Zika virus (ZIKV) infections in pregnancy has relied on individual studies with relatively small sample sizes and variable risk estimates of adverse outcomes, or on surveillance or routinely collected data. Using data from the Zika Brazilian Cohorts Consortium, this study aims, to estimate the risk of adverse outcomes among offspring of women with RT-PCR-confirmed ZIKV infection during pregnancy and to explore heterogeneity between studies. Methods: We performed an individual participant data meta-analysis of the offspring of 1548 pregnant women from 13 studies, using one and two-stage meta-analyses to estimate the absolute risks. Findings: Of the 1548 ZIKV-exposed pregnancies, the risk of miscarriage was 0.9%, while the risk of stillbirth was 0.3%. Among the pregnancies with liveborn children, the risk of prematurity was 10,5%, the risk of low birth weight was 7.7, and the risk of small for gestational age (SGA) was 16.2%. For other abnormalities, the absolute risks were: 2.6% for microcephaly at birth or first evaluation, 4.0% for microcephaly at any time during follow-up, 7.9% for neuroimaging abnormalities, 18.7% for functional neurological abnormalities, 4.0% for ophthalmic abnormalities, 6.4% for auditory abnormalities, 0.6% for arthrogryposis, and 1.5% for dysphagia. This risk was similar in all sites studied and in different socioeconomic conditions, indicating that there are not likely to be other factors modifying this association. Interpretation: This study based on prospectively collected data generates the most robust evidence to date on the risks of congenital ZIKV infections over the early life course. Overall, approximately one-third of liveborn children with prenatal ZIKV exposure presented with at least one abnormality compatible with congenital infection, while the risk to present with at least two abnormalities in combination was less than 1.0%. Funding: National Council for Scientific and Technological Development - Brazil (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq); Wellcome Trust and the United Kingdom's Department for International Development; European Union's Horizon 2020 research and innovation program; Medical Research Council on behalf of the Newton Fund and Wellcome Trust; National Institutes of Health/National Institute of Allergy and Infectious Diseases; Foundation Christophe et Rodolphe Mérieux; Coordination for the improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Capes); Ministry of Health of Brazil; Brazilian Department of Science and Technology; Foundation of Research Support of the State of São Paulo (Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP); Foundation of Research Support of the State of Rio de Janeiro (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ); Foundation of Support for Research and Scientific and Technological Development of Maranhão; Evandro Chagas Institute/Brazilian Ministry of Health (Instituto Evandro Chagas/Ministério da Saúde); Foundation of Research Support of the State of Goiás (Fundação de Amparo à Pesquisa do Estado de Goiás – FAPEG); Foundation of Research Support of the State of Rio Grande do Sul (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul – FAPERGS); Foundation to Support Teaching, Research and Assistance at Hospital das Clínicas, Faculty of Medicine of Ribeirão Preto (Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto); São Paulo State Department of Health (Secretaria de Saúde do Estado de São Paulo); Support Foundation of Pernambuco Science and Technology (Fundação de Amparo à Ciência e Tecnologia de Pernambuco – FACEPE)