256 research outputs found

    Chinese characters as sources of design of furniture

    Get PDF
    This thesis is an exploration of possibilities of the translation of Chinese characters into furniture. It is not just the two dimensional image of the character that I wish to interpret into three dimensions, but I intend that the functions and uses of the furniture are to be the meaning of the word. The final pieces are intended to be recognized as to their meaning by anyone literate in Chinese character forms. Furniture that has both form and meaning will create new possibilities for furniture\u27s role in the environment by having this extra dimension

    Charge Offset Stability in Si Single Electron Devices with Al Gates

    Full text link
    We report on the charge offset drift (time stability) in Si single electron devices (SEDs) defined with aluminum (Al) gates. The size of the charge offset drift (0.15 ee) is intermediate between that of Al/AlOx_x/Al tunnel junctions (greater than 1 ee) and Si SEDs defined with Si gates (0.01 ee). This range of values suggests that defects in the AlOx_x are the main cause of the charge offset drift instability

    Visualize and Learn Sorting Algorithms in Data Structure Subject in a Game-based Learning

    Get PDF
    The Data Structure subject is an essential Computer Science subject. Sorting algorithms are important topics in Data Structure where students are expected to learn how various sorting algorithms work and their time complexities. Some sorting algorithms may easily cause confusions to novice students, as they usually find it challenging to understand and memorize these algorithms. There is a need to find a means of technology enhanced learning to improve the learning process of students. Game based learning is a pedagogy where students learn through game playing. This mode of learning could effectively engage students to focus on the learning topics more efficiently. The study uses a sorting algorithm serious game to allow students to learn four types of sorting algorithms: Bubble sort, Selection sort, Insertion sort and Quick sort. The students would carry out self-directed learning lecture materials in the serious game, followed by refreshing their learning using a visualizer, and lastly reinforce their learning through playing a sorting serious game. Two groups of students participate in the experiment, a control group and an experiment group. The experiment group that sues the sorting algorithm games achieves better results, compared to the control group who learns without the serious game. Game-based learning provides a positive learning experience to the students that could improve the learning effectiveness. Coupled with technology such as VR headsets as a future upgrade, it would be a niche factor that would create an immersive learning experience to engage the students and enhance their learning in a virtual environment

    Detection of Gravitational Wave - An Application of Relativistic Quantum Information Theory

    Get PDF
    We show that a passing gravitational wave may influence the spin entropy and spin negativity of a system of NN massive spin-1/2 particles, in a way that is characteristic of the radiation. We establish the specific conditions under which this effect may be nonzero. The change in spin entropy and negativity, however, is extremely small. Here, we propose and show that this effect may be amplified through entanglement swapping. Relativistic quantum information theory may have a contribution towards the detection of gravitational wave.Comment: 9 page

    A cylindrical silicon-on-insulator microdosimeter: charge collection characteristics

    Get PDF
    A novel silicon-on-insulator microdosimeter for estimating the radiobiolgical effectiveness (RBE) of a mixed radiation field is presented. An ion beam induced charge collection study has confirmed the microdosimeter possesses well defined micron sized 3D cylindrical sensitive volumes. An array of these SVs has the capabilitiy of studying the track structure of high energy heavy ions typical of a deep space environment

    Methods for transverse and longitudinal spin-photon coupling in silicon quantum dots with intrinsic spin-orbit effect

    Full text link
    In a full-scale quantum computer with a fault-tolerant architecture, having scalable, long-range interaction between qubits is expected to be a highly valuable resource. One promising method of achieving this is through the light-matter interaction between spins in semiconductors and photons in superconducting cavities. This paper examines the theory of both transverse and longitudinal spin-photon coupling and their applications in the silicon metal-oxide-semiconductor (SiMOS) platform. We propose a method of coupling which uses the intrinsic spin-orbit interaction arising from orbital degeneracies in SiMOS qubits. Using theoretical analysis and experimental data, we show that the strong coupling regime is achievable in the transverse scheme. We also evaluate the feasibility of a longitudinal coupling driven by an AC modulation on the qubit. These coupling methods eschew the requirement for an external micromagnet, enhancing prospects for scalability and integration into a large-scale quantum computer

    Real-time feedback protocols for optimizing fault-tolerant two-qubit gate fidelities in a silicon spin system

    Full text link
    Recently, several groups have demonstrated two-qubit gate fidelities in semiconductor spin qubit systems above 99%. Achieving this regime of fault-tolerant compatible high fidelities is nontrivial and requires exquisite stability and precise control over the different qubit parameters over an extended period of time. This can be done by efficiently calibrating qubit control parameters against different sources of micro- and macroscopic noise. Here, we present several single- and two-qubit parameter feedback protocols, optimised for and implemented in state-of-the-art fast FPGA hardware. Furthermore, we use wavelet-based analysis on the collected feedback data to gain insight into the different sources of noise in the system. Scalable feedback is an outstanding challenge and the presented implementation and analysis gives insight into the benefits and drawbacks of qubit parameter feedback, as feedback related overhead increases. This work demonstrates a pathway towards robust qubit parameter feedback and systematic noise analysis, crucial for mitigation strategies towards systematic high-fidelity qubit operation compatible with quantum error correction protocols
    corecore