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A Cylindrical Silicon-on-Insulator Microdosimeter:
Charge Collection Characteristics

A. L. Ziebell, Student Member, IEEE, W. H. Lim, Student Member, IEEE, M. I. Reinhard, Member, IEEE,
I. Cornelius, Member, IEEE, D. A. Prokopovich, Student Member, IEEE, R. Siegele, A. S. Dzurak, Member, IEEE,

and A. B. Rosenfeld, Senior Member, IEEE

Abstract—A novel silicon-on-insulator microdosimeter for esti-
mating the radiobiological effectiveness (RBE) of a mixed radiation
field is presented. An ion beam induced charge collection study has
confirmed the microdosimeter possesses well defined micron sized
3D cylindrical sensitive volumes. An array of these SVs has the ca-
pability of studying the track structure of high energy heavy ions
typical of a deep space environment.

Index Terms—Ion beams, microdosimetry, radiobiological effec-
tiveness, silicon-on-insulator.

I. INTRODUCTION

A N effective way to determine the radiobiological effec-
tiveness (RBE) of a mixed radiation field is to employ

the regional microdosimetry approach [1]. This approach has
been applied to: fast neutron and charged particle radiation
therapy [2]–[7], predicting single event upsets (SEUs) in micro
and nano electronics [8], and assessing the biological risk
posed to radiation workers, high altitude and space aviation
crew [9], [10]. The microdosimetry approach has the advantage
that no prior knowledge of the particles contained within the
field is required. The radiobiological properties of the field are
inferred by measuring the spectral distribution of stochastic
lineal energy events in a micron sized site, where is
the quotient of energy deposited by a single event , and the
volume’s mean chord length i.e., for all primary and
secondary particles generated during the exposure of the tissue
or electronics to ionizing radiation. With knowledge of the
RBE is calculated using , where is
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a quality factor obtained from radiobiological experiments [1],
[2]. Experimental measurements of require a radiation
detection instrument with a sensitive volume (SV) equivalent in
size to that of a biological cell. Traditionally gas proportional
counters have been used. Such instruments have the advantage
of excellent tissue equivalency of the gas but suffer from some
well documented shortcomings. These shortcomings include:
wall effects, a large physical volume and the need for a high
operating voltage [1], [11]–[14]. At present there exists a need
for an easy to use portable microdosimeter with improved
spatial resolution. Solid-state detectors address this need.

The first comparison of a single p-n junction silicon
solid-state detector to a gas proportional counter was made
in 1980 [15]. The spectra from the silicon solid-state detector
showed significant differences to that obtained from the gas
proportional counter. This was mainly due to the silicon’s
larger than ideal sensitive thickness. Since that first comparison
the research and development of solid-state microdosimeters
has progressed markedly.

In the 1990’s an array of reverse-biased silicon p-n junc-
tions was proposed for characterizing complex radiation envi-
ronments inside spacecraft and aircraft [16], [17]. The work
was intended to have applications in determining single event
upset (SEU) risks to microelectronics and as a biological mi-
crodosimeter for personnel monitoring. The detector was used
for the separation of neutron irradiation in a mixed radiation
field. It was based on the deposition of energy by secondary
charged particles originating in silicon. Microdosimetric spectra
obtained from the device have not been presented and the re-
sponse of the detector was qualitative only.

A solid-state Ultraviolet erasable Programmable Read Only
Memory (UVPROM) device has also been developed for mon-
itoring the exposure of systems to ionizing radiation [18]. This
device consists of an array of Floating gate Avalanche injection
Metal Oxide Semiconductor (FAMOS) transistors. The appli-
cation of the floating gate as a dosimeter is based on measuring
the gradual neutralization of charge, hence subsequent change in
transistor logic state, by ionizing radiation and associating this
change to cell deactivation in a mixed radiation field. Consid-
ering the size of the polysilicon gate is of nanometer order, this
devices may be considered as the first approach to solid state
nanodosimetry

Recently a monolithic silicon telescope has been
introduced as a possible microdosimeter [19]. Operated solely,
the stage of the device can be employed as a planar mi-
crodosimeter for fields normal to the surface. With both stages
operated in co-incidence the device may be used to discern the

0018-9499/$25.00 © 2008 IEEE
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identity of an incident particle (given that the range of the par-
ticle is less than the thickness of the device) and assess the RBE
of the field.

The concept of obtaining tissue equivalent microdosimetric
measurements using a solid state detector was first introduced
by Rosenfeld [20]. This approach uses a planar 2D semicon-
ductor-on-insulator (SOI) based device developed at the Centre
for Medical Radiation Physics (CMRP), University of Wollon-
gong, Australia [21].

This device consists of a 2D array of rectangular paral-
lelepiped diode structures all within close proximity to one
another. Each SV is 10 thick and has a surface area of
30 30 . All SVs are connected in parallel.

The device has the potential for application in the prediction of
Single Event Upsets (SEUs) in silicon microelectronics. SEUs
occur when a charged particle, such as a recoil ion produced
from a high energy neutron or proton interaction, deposits some
critical amount of charge in the p-n junction of a microelectronic
device. Since it is silicon based, the SOI microdosimeter is
capable of monitoring and modelling this energy deposition.
This is relevant to both medical and radiation protection devices
where atmospheric neutrons have been observed to induce SEUs
in medical implantable devices such as pacemakers as well as
automotive electronics and the safeguard instrumentation used
in reactor facilities [22]–[24]. Previous work has investigated
the response of the SOI microdosimeter to neutrons [25], [26]
and heavy ions [27]. The device has also been successfully tested
for applications in radiation therapy [28], radiation protection
[10], [29], and deep space environments at the NASA radiation
facility, Brookhaven National Laboratory (BNL) [9] with 0.6
GeV/n iron and 1.0 GeV/n titanium ions.

Studies on the charge collection characteristics of the device
have found that due to the electric field distribution within the
planar SV, the charge collection efficiency (CCE) of the de-
vice varies with position [30]. This introduces significant lat-
eral charge diffusion effects which complicate charge collec-
tion. The elongated rectangular geometry of the SV also gives
rise to a less than ideal chord length variance that can lead to
an over-estimation of energy deposited within the SV. A cube
or cylinder is known to provide a better approximation to the
ideal geometry of the sphere whilst still providing a realistic
geometry for successful fabrication utilising the semiconductor
planar process [12].

Based on a decade of experience a new generation SOI
microdosimeter has been proposed by the CMRP and devel-
oped in collaboration with the Australian Nuclear Science
and Technology Organisation (ANSTO) and the University of
New South Wales (UNSW). The design of this new device is
based on an array of physically isolated 3D cylindrical p-i-n
diode SVs. The cylindrical geometry reduces the chord length
variance throughout the SV and supports a radial electric field.
The radial electric field facilitates the collection of all deposited
charge via drift allowing for a near 100% CCE across the entire
SV. Fig. 1 shows a schematic of the SV design and the
electrical field distribution. Each of these SVs is designed as
part of a raised mesa structure to further isolate the SV from
any unwanted charge collection effects.

Fig. 1. A schematic showing the design of a 3D cylindrical SOI microdosimeter
diode. The design overcomes the shortcomings of the previous 2D planar SOI
microdosimeter.

The array was designed to have translational symmetry. The
symmetry being such that any single SV is surrounded by 4
identical SVs all connected in parallel to a separate read out
channel. This dual channel read out gives the device: 1) the
ability to correctly record the amount of energy an oblique
charged particle deposits in individual adjacent SVs, and 2)
the potential to differentiate between particles that possess the
same unrestricted LET but produce different delta electron
track structures which are associated with different quality
factors. This potential for particle differentiation is particularly
important for the characterization of high energy galactic
cosmic rays (GCR). For example, within the GCR Fe ions with
an energy of 1 GeV/u, and secondary alpha particles with an
energy in the MeV range, possess the same unrestricted LET of
about 200 but produce distinctly different biological
effects due to the different quality of each radiation. To differ-
entiate between the two particles consideration of the different
delta electron track structure that each produces must then be
made. Fe ions produce delta electrons with a range of more
than 10 . Therefore they could be detected by coincidence
measurements of neighboring SVs in the array if the distance
between each SV, , was of the order of 5–15 . Such dis-
tances may be achieved with the planned implementation of
0.18 feature fabrication technology. For the prototype array
presented, is 80 (with the current fabrication technology
allowing a minimum of 10 ). Fig. 2 shows the layout of
this SV array design.

The purpose of this work was to examine the charge collec-
tion characteristics in SVs of this new SOI design, through the
use of the ion beam induced charge collection (IBIC) technique,
to: 1) confirm that each individual SV is a well defined 3D cylin-
drical site, and 2) confirm that an array of such SVs can be suc-
cesfully read out in a parallel mode. The electrical characteris-
tics of this new SOI design are also presented.

II. THE DEVICE AND EXPERIMENTAL METHOD

A. Fabrication

Fabrication of the SV employed planar processing techniques
on a high resistivity -- silicon on insulator
(SOI) bonded wafer. Phosphorus and boron were diffused into
the silicon wafer to produce the co-axial p-i-n diode structures.
An etching process created the thick, , raised mesa SV
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Fig. 2. A schematic of the design of the array of SVs. Notice that each SV
is surrounded by 4 identical SVs all connected to a separate charge sensitive
pre-amplifier.

Fig. 3. A cross sectional schematic of the microdosimeter. Note the cylindrical
nature of the design.

structures. 0.6 thick evaporated Al tracks were laid to fa-
cilitate electrical connection. A schematic of the SV is shown
in Fig. 3. The annular -- intrinsic region has a variable radial
width, . Further details on the fabrication and TCAD model-
ling of the device are presented in [31].

For this study three types of devices were fabricated for
testing: 1) an independently read out SV of , 2) an
independently read out SV of , and 3) a partial array
of identical SVs, with , all connected in parallel for
single channel read out.

B. Electrical Characterisation

The electrical properties of each device was determined using
conventional current-voltage (IV) and capacitance-voltage (CV)
testing with a Keithley 6517A electrometer and a Boonton 7200
capacitance bridge. All measurements were performed under
vacuum and at room temperature to allow for reproducible con-
ditions.

C. Charge Collection Imaging

The charge collection characteristics of each device were ex-
perimentally determined via an IBIC study. This was performed
using the Australian Nuclear Science and Technology Organi-
sation (ANSTO) heavy ion microprobe. The use of this tech-
nique for characterizing silicon microdosimeter devices has pre-
viously been described in detail [32]. A mono-energetic beam
of He ions focused to a diameter of approximately 1.0 was

made incident on the microdosimeter device. The amount of en-
ergy deposited within the microdosimeter for each ion traversal,

, was measured with a standard charge sensitive preampli-
fier, shaping amplifier and multi-channel analyser (MCA) in co-
incidence with digitized voltage signals of the beam position,

and for each event in . Data triplets were
saved for each event in a list mode file. Analysis software used
these files to generate IBIC imaging maps displaying either; a
spatially resolved image of the median amount of charge col-
lected, a median energy map, or the spatially resolved frequency
of events contained within a particular range of deposited ener-
gies of interest, a frequency distribution map, as a function of
beam position

III. RESULTS AND DISCUSSION

A. Electrical Characterisation

The typical reverse current and capacitance values for a func-
tioning independently read out 2 or 10 width diode at a 9 V
operating bias was 2–3 pA and 25 pF respectively. The typical
reverse current for a functioning individual row on an arrayed
device was 2 pA. The capacitance of the device with 6 func-
tioning rows externally connected in parallel was 11 pF.

B. Charge Collection Imaging: 2 SV

The deposited energy from an independently read out 2
radial width SV reverse biased to 9 V in response to 3 MeV He
ions is shown in Fig. 4(a). A peak can be seen at an energy of
approximately 313 keV. The expected energy loss of a 3 MeV
He ion in 2 of silicon is 392 keV (lineal energy transfer

[33]). This suggests the thickness of
the silicon superficial layer of the SOI wafer was in fact 1.6 .
rather than the anticipated 2 . Such a variation in thickness
can not be discounted as a result of the fabrication process. To
understand the spatially resolved response of the diode to the
3 MeV He ion strikes the IBIC median energy map is shown
in Fig. 4(b). As previously mentioned, the median energy map
displays the median amount of charge collected by the charge
sensitive preamplifier as a function of beam position . An
orange (/light grey), red (/mid grey), or blue (/dark grey) pixel
corresponds to a position on the SV where there is high, interme-
diate, or low median charge collection respectively. In Fig. 4(b)
an annular region of high charge collection, orange (/light grey)
pixels, can be seen. This shows an excellent spatial correlation to
the SV’s intrinsic (high resistivity -- region). In this region all
the deposited charge is expected to be collected under drift due
to the presence of the strong electric field throughout the whole
SV. The median energy map confirms this. The uniformity in
the amount of charge collected in this region also implies a uni-
form thickness of the SV in the intrinsic region. Again referring
to Fig. 4(b), regions of low charge collection, blue (/dark grey)
pixels, can be seen in the centre and outer circumference of the
SV. These regions correlate with the and doped regions
of the SV respectively. High doping concentrations in these re-
gions do not allow any penetration of the electric field. As such
a statistically insignificant amount of charge is collected from
the ions incident here due to a high degree of charge carrier re-
combination and reliance on charge diffusion in the absence of
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Fig. 4. (a) The energy spectrum produced by an independent 9 V reverse biased
2 �� radial width SV in response to a beam of 3 MeV �� ions. The peak is
at an energy of ���� ��� suggesting the thickness of the SV is 1.6 �� rather
than the expected 2 ��. (b) An IBIC median energy map of an independently
read out 9 V reverse biased 2 �� radial width 3D cylindrical SV in response to
a beam of 3 MeV He ions. A well defined annular region of full charge collec-
tion is observed as expected. A small amount of incomplete charge collection is
observed around this annular region.

an applied electric field. At the outer and inner fringes of the
annular high charge collection region, red (/mid grey) pixels in-
dicate a level of intermediate charge collection. From Fig. 5 it
can be seen that this incomplete charge collection is only sta-
tistically significant within less than 1 of the intrinsic re-
gion. No real events were observed in the regions external to the
mesa structure of the SV. The sputtered events that can be seen
are artefacts produced by ions which were initially directed to-
wards their displayed location but were later made incident onto
the SV of the microdosimeter due to scattering with the residual
atoms and molecules within the evacuated beam tube.

Fig. 5(a) and (b) show the median energy maps of a grounded
2 radial width SV in response to a beam of 3 MeV He ions
and a beam of 5.5 MeV He ions [15],
respectively. In response to the more energetic, lower LET, 5.5
MeV ions the SV shows the same spatially resolved response
as it does to the 3 MeV He ions. A comparison of the two de-
posited energy spectra corresponding to these median energy
maps is shown in Fig. 6. Theoretical calculations considering
the different LET of the two beams and the 1.6 thickness of
the SV estimate a 96 keV difference in the energy the two beams

Fig. 5. An IBIC median energy map comparison of (a) an independently read
out grounded 2 �� radial width SV in response to a beam of 3 MeV He ions
and (b) an identical grounded SV in response to a beam of 5.5 MeV He ions.
The geometrical response of the SV is consistent in both cases. In response to
the 5.5 MeV there is a reduction in the amount of energy collected from each
ion strike in accordance with the lower LET of the ions.

will deposit within the SV. A difference was
experimentally observed. This confirms the signal produced by
the device is directly related to the LET of the incident ion as
desired for any microdosimeter.

These results clearly demonstrate the fabricated SV has ex-
cellent charge collection characteristics even in passive mode
(without bias). This is important for space applications of the
device.

C. Charge Collection Imaging: 10 SV

The deposited energy spectrum from an independently read
out 10 radial width grounded SV in response to 3 MeV

ions is shown in Fig. 7. A peak can be seen at an en-
ergy of approximately . On the right of this
peak a low statistics region of enhanced charge collection is ob-
served. To understand the source of this enhanced charge col-
lection IBIC frequency distribution maps were generated to ex-
amine the spatial origin of events contributing to the following
regions of the energy spectrum: a) 60–235 keV, b) 250–300 keV
and c) 310–350 keV. These regions correspond to the regions of
the spectrum below the main peak, the peak itself, and the re-
gion of enhanced charge collection. The respective frequency
distribution maps are shown in Fig. 8(a)–(c). From Fig. 8(a) it
can be seen that counts below the main peak of the spectrum
originated from ions incident upon the centre and outer fringes
of the SV. From Fig. 8(b) it can be seen that counts in the main
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Fig. 6. A comparison of the two spectra produced by a grounded independently
read out 2 �� radial width SV in response to a beam of 3 MeV He ions and a
beam of 5.5 MeV He ions, respectively. There is a �� ���� � ��� difference
in the amount of energy each beam deposited within the SV. This is in excellent
agreement with 96 keV difference expected given the different LET of the two
beams and the 1.6 �� thickness of the SV.

Fig. 7. The energy spectrum produced by a grounded independent 10�� radial
width SV in response to a beam of 3 MeV �� ions. There is a region of
increased charge collection to the right of the main peak that was not seen in the
spectrum produced by the 2 �� radial width independent SV.

peak of the spectrum originated from ions incident upon the an-
nular intrinsic region of the SV. Counts in the main peak of the
spectrum and below are therefore the result of the physical pro-
cesses previously observed and discussed for the 2 radial
width SV. The origin of counts above the main peak of the spec-
trum, those not previously seen in the study of the 2 radial
width SV, is shown in Fig. 8(c). It can be seen that counts con-
tributing to this region of increased charge collection originated
from ions incident upon a region of the SV lying beneath the
evaporated Al contact [see Fig. 8(d)]. Ions incident upon this
part of the SV have an increased LET due to their prior attenua-
tion through the Al. A calculation using [15] has shown this in-
creased LET corresponds to the ions depositing approximately
10.1 keV more energy within the SV than those ions that did

Fig. 8. (a)–(c) Event frequency distribution maps corresponding to the 3 dis-
tinct regions of the energy spectrum of. (d) A top view schematic of the Al
tracks overlaying the SV. The increased charge collection observed in the en-
ergy spectrum appears to originate from ions incident upon the region of the SV
lying directly beneath the overlaying Al track.

not undergo any attenuation. Such an increase in deposited en-
ergy is not sufficient to explain the observed region of enhanced
charge collection. This 10 keV increase in energy would not be
resolved from the main peak given the straggling of ions and
the inherent 5 keV FWHM noise of the detector. A more likely
source of the increased charge collection region is that the thick-
ness of the silicon under the Al contact is slightly greater than
that of the surrounding areas, a result of the fabrication process.

Even though the number of counts that result from the thicker
region of the SV are low, it may lead to some inaccuracy in the
final microdosimetric spectra. Reasons for the charge enhance-
ment effect in this region of the SV should thus be investigated
further.

D. Charge Collection Imaging: Array of 2 Svs

A partial arrayed device with 6 functioning rows of individual
SVs was fabricated and demonstrated to be functional. Alternate
rows, like those corresponding to Channel 1 in Fig. 2, were con-
nected in parallel to a single charge sensitive preamplifier and
reverse biased to 10 V. The interlaying rows, like those corre-
sponding to Channel 2 in Fig. 2, were then connected in parallel
and grounded.

A section of the device approximately 230 230 in area
was scanned with 3 MeV ions. The scan covered four SVs
from two adjacent biased rows. Fig. 9 is a median energy map of
this scan. The four connected SVs are observed to act as inde-
pendent, well defined sites of complete charge collection as de-
sired. No cross-talk between SVs was observed. This confirms
the feasibility of producing a full array of independent cylin-
drical SVs.

A more detailed investigation into the charge collection char-
acteristics of the array has revealed some peculiarities. These
are reflected in Fig. 10; a comparison of the deposited energy
spectrum of the 230 230 section of the array and the de-
posited energy spectrum of the individual 2 radial width SV
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Fig. 9. An IBIC median energy map of a section of the 10 V reverse biased
array. The four connected diodes can be seen to act as independent well defined
sites of full charge collection.

Fig. 10. A comparison of the spectra produced in response to a beam of 3 MeV
He ions by a 9 V reverse biased independently read out 2 �� radial width SV
and a 10 V reverse biased section of the array. The significantly most significant
energy in the spectrum produced by the array is lower than the corresponding
energy in the spectrum produced by the independent SV.

presented above. While both spectra have a pronounced peak in
the region of 230–330 keV, the peaks do not line up and the
array spectrum appears to have a smaller unresolved peak of
higher energy next to it. To investigate this phenomenon IBIC
frequency distribution maps were generated to examine the spa-
tial origin of the events that contributed to regions of interest on
the spectrum. Fig. 11 shows frequency distribution maps for the
regions: a) 0–160 keV, b) 160–220 keV, c) 220–270 keV and
d) 270–360 keV. From Fig. 11(a) it is possible to see that low
energy events (0–160 keV) are due to the collection of diffused
charge that occurs when ions are incident upon the periphery
of each SV. The square geometry of the mesa structure is ob-
served in this array scan, and not the individual SV scan, due
to the inclusion of events with an energy of less than 45 keV.
During the scan of the individual SV the MCA threshold was
set at . The frequency distribution map in Fig. 11(b)
presents the spatial origin of events up to an energy of 220 keV.
This energy region is similar to that of the frequency distribution
map in Fig. 8(a). Both maps show comparable charge collection

Fig. 11. (a)–(d) Event frequency distribution maps corresponding to the 4 dis-
tinct regions of the energy spectrum in Fig. 10. In (c) a high frequency of counts
is observed on the upper side of the SV due to the asymmetry of the fabrication
mask used to create the fragment of the array. This leads to a statistically more
significant number of counts in the region of the spectrum just below the full
energy peak.

characteristics. This further confirms the similarity of a singu-
larly produced SV and a SV produced as part of an array.

Close examination of the IBIC maps in Figs. 9 and 11(b) re-
veals that the core of each SV in the array is not concentric
with the outer region of the SV. This is most likely the result
of a mismatch between masks during the fabrication process.
The mismatch has led to a slight loss of radial symmetry in the
electric field distribution throughout the SV and subsequent non
uniform charge collection characteristics. This explains the dif-
ference in the deposited energy spectrum of the array as com-
pared to the single SV (Fig. 10). The steep gradient of the
electric field away from the core has resulted in a region
of weak electric field to one side of the SV. Ions incident in
this region give rise to the events seen in the main peak of the
array spectrum as shown in the frequency distribution map of
Fig. 11(c). The map in Fig. 11(d) shows full charge collection
is occurring within close proximity to the core where the
electric field is strong. The energy of charge collected in this re-
gion is equal to the energy of the main peak in the individual SV
spectrum. Thus with an improved matching of masks during the
fabrication process the spectrum produced by an array should be
in good agreement with the spectrum produced by a single SV.

Results from this IBIC investigation have demonstrated the
feasibility of a full array of cylindrical SVs. Results have also
demonstrated the excellent spatial resolution IBIC is capable of
for micron sized structures and its capability for application in
the quality assurance of modern radiation detector fabrication
processes.

IV. CONCLUSION

A SOI microdosimeter with a novel array of 3D cylindrical
SVs was introduced and investigated. The design of this micro-
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dosimeter addressed the issues identified as limiting the perfor-
mance of a previous SOI microdosimeter technology. An IBIC
study has shown that each individual prototype concentric p-i-n
diode structure performs as a well defined 3D cylindrical site
of near 100% charge collection efficiency, corresponding to a
truly micron sized SV, and an array of these SVs can be suc-
cessfully read out in a parallel mode. Once a full array has been
successfully fabricated this SOI design will have great potential
for application in regional microdosimetry.
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