14 research outputs found
Fatty fish and fish omega-3 fatty acid intakes decrease the breast cancer risk: a case-control study
2012 경제발전경험모듈화사업 : 대중교통체계 개선
Summary
Chapter 1 Background to Public Transport Reform
1. Social and Economic Conditions of Recent Decades
2. Transport Policy Conditions of Recent Decades
Chapter 2 Building a Public Transport System: Urban Rail
1. Process of Introducing Urban Railways in Seoul
2. Phase 1 and 2 of Seoul Metropolitan Urban Rail
3. Urban Rail Operation System
4. Roles of the Central and Local Governments in Urban Rail Construction
5. Achievements of Seoul Metropolitan Urban Rail Projects and Their Implications
Chapter 3 Building a Public Transport System: Buses
1. Background to Bus Reform
2. Overview of the Bus Operation System
3. Contents of Bus Reform
4. Bus Transport Operational Management System
5. Achievement and Implications of Bus Reform
Chapter 4 Achievements of Public Transport Reform and Policy Suggestions
1. Achievements of Public Transport Reform
2. Policy Suggestions for Improving Public Transport System
Reference
Clinical implications of CYP2D6 genotypes predictive of tamoxifen pharmacokinetics in metastatic breast cancer
PURPOSE: The CYP3A and CYP2D6 enzymes play a major role in converting tamoxifen to its active metabolites. CYP3A is a highly inducible enzyme, regulated mainly by pregnane X receptor (PXR). This study assessed the association between genetic polymorphisms of CYP2D6 and PXR, and tamoxifen pharmacokinetics (PK) and clinical outcomes in patients with breast cancer. PATIENTS AND METHODS: Plasma concentrations of tamoxifen and its metabolites were measured. Common alleles of CYP2D6 and PXR were identified in 202 patients treated with tamoxifen 20 mg daily for more than 8 weeks. Twelve of the 202 patients and an additional nine patients with metastatic breast cancer receiving tamoxifen were assessed for clinical outcome in correlation with genotypes. RESULTS: Patients carrying CYP2D6*10/*10 (n = 49) demonstrated significantly lower steady-state plasma concentrations of 4-hydroxy-N-desmethyltamoxifen and 4-hydroxytamoxifen than did those with other genotypes (n = 153; 4-hydroxy-N-desmethyltamoxifen: 7.9 v 18.9 ng/mL, P < .0001; 4-hydroxytamoxifen: 1.5 v 2.6 ng/mL, P < .0001), whereas no difference by PXR genotypes was found. CYP2D6*10/*10 was significantly more frequent among nonresponders with MBC (100% v 50%, P = .0186). In Cox proportional hazard analysis, CYP2D6 genotype and number of disease sites were significant factors affecting time to progression (TTP). The median TTP for patients receiving tamoxifen was shorter in those carrying CYP2D6*10/*10 than for others (5.0 v 21.8 months, P = .0032) CONCLUSION: CYP2D6*10/*10 is associated with lower steady-state plasma concentrations of active tamoxifen metabolites, which could possibly influence the clinical outcome by tamoxifen in Asian breast cancer patients
Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals
Among physical stimulation modalities, magnetism has clear advantages, such as deep penetration and untethered interventions in biological subjects. However, some of the working principles and effectiveness of existing magnetic neurostimulation approaches have been challenged, leaving questions to be answered. Here we introduce m-Torquer, a magnetic toolkit that mimics magnetoreception in nature. It comprises a nanoscale magnetic torque actuator and a circular magnet array, which deliver piconewton-scale forces to cells over a working range of similar to 70 cm. With m-Torquer, stimulation of neurons expressing bona fide mechanosensitive ion channel Piezo1 enables consistent and reproducible neuromodulation in freely moving mice. With its long working distance and cellular targeting capability, m-Torquer provides versatility in its use, which can range from single cells to in vivo systems, with the potential application in large animals such as primates.11Nsciescopu
Development of Plum Seed-Derived Carboxymethylcellulose Bioink for 3D Bioprinting
Three-dimensional bioprinting represents an innovative platform for fabricating intricate, three-dimensional (3D) tissue structures that closely resemble natural tissues. The development of hybrid bioinks is an actionable strategy for integrating desirable characteristics of components. In this study, cellulose recovered from plum seed was processed to synthesize carboxymethyl cellulose (CMC) for 3D bioprinting. The plum seeds were initially subjected to α-cellulose recovery, followed by the synthesis and characterization of plum seed-derived carboxymethyl cellulose (PCMC). Then, hybrid bioinks composed of PCMC and sodium alginate were fabricated, and their suitability for extrusion-based bioprinting was explored. The PCMC bioinks exhibit a remarkable shear-thinning property, enabling effortless extrusion through the nozzle and maintaining excellent initial shape fidelity. This bioink was then used to print muscle-mimetic 3D structures containing C2C12 cells. Subsequently, the cytotoxicity of PCMC was evaluated at different concentrations to determine the maximum acceptable concentration. As a result, cytotoxicity was not observed in hydrogels containing a suitable concentration of PCMC. Cell viability was also evaluated after printing PCMC-containing bioinks, and it was observed that the bioprinting process caused minimal damage to the cells. This suggests that PCMC/alginate hybrid bioink can be used as a very attractive material for bioprinting applications
Fatty fish and fish omega-3 fatty acid intakes decrease the breast cancer risk: a case-control study
Abstract Background Although it is believed that fish ω-3 fatty acids may decrease breast cancer risk, epidemiological evidence has been inconclusive. This study examined the association between fish and fish ω-3 fatty acids intake with the risk of breast cancer in a case-control study of Korean women. Methods We recruited 358 incident breast cancer patients and 360 controls with no history of malignant neoplasm from the National Cancer Center Hospital between July 2007 and April 2008. The study participants were given a 103-item food intake frequency questionnaire to determine their dietary consumption of fish (fatty and lean fish) and ω-3 fatty acids derived from fish (eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA)). Results Using a multivariate logistic regression model, high intake of fatty fish was associated with a reduced risk for breast cancer in both pre- and postmenopausal women (OR [95% CI] for highest vs. lowest intake quartiles, p for trend: 0.19 [0.08 to 0.45], p p = 0.005 for postmenopausal women). Similarly, reductions in breast cancer risk were observed among postmenopausal subjects who consumed more than 0.101 g of EPA (OR [95% CI]: 0.38 [0.15 to 0.96]) and 0.213 g of DHA (OR [95% CI]: 0.32 [0.13 to 0.82]) from fish per day compared to the reference group who consumed less than 0.014 g of EPA and 0.037 g of DHA per day. Among premenopausal women, there was a significant reduction in breast cancer risk for the highest intake quartiles of ω-3 fatty acids (ORs [95% CI]: 0.46 [0.22 to 0.96]), compared to the reference group who consumed the lowest quartile of intake. Conclusion These results suggest that high consumption of fatty fish is associated with a reduced risk for breast cancer, and that the intake of ω-3 fatty acids from fish is inversely associated with postmenopausal breast cancer risk.</p