27 research outputs found

    Retriever: An Agent for Intelligent Information Recovery

    Get PDF

    Forecasting Exchange-Rates via Local Approximation Methods and Neural Networks

    Get PDF
    There has been an increased number of papers in the literature in recent years, applying several methods and techniques for exchange - rate prediction. This paper focuses on the Greek drachma using daily observations of the drachma rates against four major currencies, namely the U.S. Dollar (USD), the Deutsche Mark (DM), the French Franc (FF) and the British Pound (GBP) for a period of 11 years, aiming at forecasting their short-term course by applying local approximation methods based on both chaotic analysis and neural networks.Key Words: Exchange Rates, Forecasting, Neural Networks

    Modeling And Forecasting Exchange-Rate Shocks

    Get PDF
    This paper considers the extent to which the application of neural networks methodology can be used in order to forecast exchange-rate shocks. Four major foreign currency exchange rates against the Greek Drachma as well as the overnight interest rate in the Greek market are employed in an attempt to predict the extent to which the local currency may be suffering an attack. The forecasting is extended to the estimation of future exchange rates and interest rates. The MLP proved to be highly successful in predicting the shocks, while exhange-rates and interest-rates forecasts with MLP and RBF optimized by a genetic algorithm resulted in good approximations

    Forecasting Exchange-Rates via Local Approximation Methods and Neural Networks

    Get PDF
    There has been an increased number of papers in the literature in recent years, applying several methods and techniques for exchange - rate prediction. This paper focuses on the Greek drachma using daily observations of the drachma rates against four major currencies, namely the U.S. Dollar (USD), the Deutsche Mark (DM), the French Franc (FF) and the British Pound (GBP) for a period of 11 years, aiming at forecasting their short-term course by applying local approximation methods based on both chaotic analysis and neural networks

    Testing Currency Predictability Using An Evolutionary Neural Network Model

    Get PDF
    Two alternative learning approaches of a MLP Neural Network architecture are employed to forecast foreign currencies against the Greek Drachma, a Back-Propagation with a hyperbolic tangent activation scheme and an evolutionary trained model. Four major currency data series, namely the U. S. Dollar, the British Pound, the French Franc and the Deutsche Mark, are used in this forecasting experiment. Extended simulations have shown a high predictive ability, which is significantly better when using the actual rates compared to using the logarithmic returns of each series. The genetic algorithm performs best on FF and DM, while the back-propagation on USD and BP

    In Search of a Warning Strategy Against Exchange-rate Attacks: Forecasting Tactics Using Artificial Neural Networks

    Get PDF
    The contribution that this paper aspires to make is the prediction of an oncoming attack against the domestic currency, something that is expected to increase the possibilities of successful hedging by the authorities. The analysis has focused on the Greek Drachma,which has suffered a series of attacks during the past few years, thus offering a variety of such "shock" incidents accompanied by frequent interventions by the authorities. The prediction exercised here is performed in a discrete dynamics environment, based on the daily fluctuations of the interbank overnight interest rate, using artificial neural networks enhanced by genetic algorithms. The results obtained on the basis of the forecasting performance have been considered most encouraging, in providing a successful prediction of an oncoming attack against the domestic currency

    Forecasting Exchange-Rates via Local Approximation Methods and Neural Networks

    Get PDF
    There has been an increased number of papers in the literature in recent years, applying several methods and techniques for exchange - rate prediction. This paper focuses on the Greek drachma using daily observations of the drachma rates against four major currencies, namely the U.S. Dollar (USD), the Deutsche Mark (DM), the French Franc (FF) and the British Pound (GBP) for a period of 11 years, aiming at forecasting their short-term course by applying local approximation methods based on both chaotic analysis and neural networks

    Modeling And Forecasting Exchange-Rate Shocks

    Get PDF
    This paper considers the extent to which the application of neural networks methodology can be used in order to forecast exchange-rate shocks. Four major foreign currency exchange rates against the Greek Drachma as well as the overnight interest rate in the Greek market are employed in an attempt to predict the extent to which the local currency may be suffering an attack. The forecasting is extended to the estimation of future exchange rates and interest rates. The MLP proved to be highly successful in predicting the shocks, while exhange-rates and interest-rates forecasts with MLP and RBF optimized by a genetic algorithm resulted in good approximations

    Forecasting Exchange-Rates via Local Approximation Methods and Neural Networks

    Get PDF
    There has been an increased number of papers in the literature in recent years, applying several methods and techniques for exchange - rate prediction. This paper focuses on the Greek drachma using daily observations of the drachma rates against four major currencies, namely the U.S. Dollar (USD), the Deutsche Mark (DM), the French Franc (FF) and the British Pound (GBP) for a period of 11 years, aiming at forecasting their short-term course by applying local approximation methods based on both chaotic analysis and neural networks

    GIBA: a clustering tool for detecting protein complexes

    Get PDF
    Background: During the last years, high throughput experimental methods have been developed which generate large datasets of protein - protein interactions (PPIs). However, due to the experimental methodologies these datasets contain errors mainly in terms of false positive data sets and reducing therefore the quality of any derived information. Typically these datasets can be modeled as graphs, where vertices represent proteins and edges the pairwise PPIs, making it easy to apply automated clustering methods to detect protein complexes or other biological significant functional groupings. Methods: In this paper, a clustering tool, called GIBA (named by the first characters of its developers' nicknames), is presented. GIBA implements a two step procedure to a given dataset of protein-protein interaction data. First, a clustering algorithm is applied to the interaction data, which is then followed by a filtering step to generate the final candidate list of predicted complexes. Results: The efficiency of GIBA is demonstrated through the analysis of 6 different yeast protein interaction datasets in comparison to four other available algorithms. We compared the results of the different methods by applying five different performance measurement metrices. Moreover, the parameters of the methods that constitute the filter have been checked on how they affect the final results. Conclusion: GIBA is an effective and easy to use tool for the detection of protein complexes out of experimentally measured protein - protein interaction networks. The results show that GIBA has superior prediction accuracy than previously published methods
    corecore