89 research outputs found
Endothelial-derived APT1-mediated macrophage-endothelial cell interactions participate in the development of atherosclerosis by regulating the Ras/MAPK signaling pathway
Acyl-protein thioesterase 1 (APT1) can affect H-Ras localization and function by promoting its depalmitoylation. However, relatively little attention has been paid to the effects of APT1 on H-Ras in the cardiovascular system. In this study, we revealed its roles in atherosclerosis development using oxidative low-density lipoprotein (ox-LDL)-induced endothelial dysfunction models and a Western diet-induced ApoEâ/â mouse model. The results showed that APT1 expression was up-regulated, while that of miR-138-5p (miR-138) was down-regulated (p < 0.05) in this model. In the meantime, APT1 and H-Ras were translocated from the cytoplasm to the plasma membrane. Bioinformatic analysis and double fluorescence identified miR-138 as the upstream regulator of APT1. APT1 knockdown regulated H-Ras localization and expression, which subsequently affected the MAPK signaling pathway and the expression of its downstream factors. Further research indicated that human umbilical vein endothelial cells (HUVECs)-derived biogenic nanoparticles (BiNPs), hBPs secretion, and RNA expression of hBP-loaded APT1 were increased (p < 0.05) in the ox-LDL induced endothelial dysfunction model. Meanwhile, the HUVECs-derived APT1 could further affect macrophage function through hBP transportation. Altogether, this study demonstrated that the miR-138-APT1 axis may be partially responsible for atherosclerosis development by regulating the H-Ras-MAPK signaling pathway and hBP transportation. The results also shed novel insight on the underlying mechanisms of, and identify potential diagnostic and therapeutic targets for, atherosclerotic cardiovascular diseases in the future
Van der Waals SnSe2(1-x)S2x alloys: composition-dependent bowing coefficient and electron-phonon interaction
The design of advanced functional materials with customized properties often requires the use of an alloy. This approach has been used for decades, but only recently to create van der Waals (vdW) alloys for applications in electronics, optoelectronics, and thermoelectrics. A route to engineering their physical properties is by mixing isoelectronic elements, as done for the SnSe2(1âx)S2x alloy. Here, by experiment and firstâprinciples modeling, it is shown that the value of x can be adjusted over a wide range, indicating good miscibility of the SnS2 and SnSe2 compounds. The xâdependence of the indirect bandgap energy from Eind = 1.20 eV for SnSe2 to Eind = 2.14 eV for SnS2, corresponds to a large bowing coefficient b â 1 eV, arising from volume deformation and charge exchange effects due to the different sizes and orbital energies of the Sâ and Seâatoms. This also causes compositionâdependent phonon energy modes, electronâphonon interaction, and temperature dependence of Eind. The alloys are exfoliable into thin layers with properties that depend on the composition, but only weakly on the layer thickness. This work shows that the electronic and vibrational properties of the SnSe2(1âx)S2x alloy and its thin layers provide a versatile platform for development and exploitation
Epigenetic modification and inheritance in sexual reversal of fish
Environmental sex determination (ESD) occurs in divergent, phylogenetically unrelated taxa, and in some species, co-occurs with genetic sex determination (GSD) mechanisms. Although epigenetic regulation in response to environmental effects has long been proposed to be associated with ESD, a systemic analysis on epigenetic regulation of ESD is still lacking. Using half-smooth tongue sole (Cynoglossus semilaevis) as a modelâa marine fish that has both ZW chromosomal GSD and temperature-dependent ESDâwe investigated the role of DNA methylation in transition from GSD to ESD. Comparative analysis of the gonadal DNA methylomes of pseudomale, female, and normal male fish revealed that genes in the sex determination pathways are the major targets of substantial methylation modification during sexual reversal. Methylation modification in pseudomales is globally inherited in their ZW offspring, which can naturally develop into pseudomales without temperature incubation. Transcriptome analysis revealed that dosage compensation occurs in a restricted, methylated cytosine enriched Z chromosomal region in pseudomale testes, achieving equal expression level in normal male testes. In contrast, female-specific W chromosomal genes are suppressed in pseudomales by methylation regulation. We conclude that epigenetic regulation plays multiple crucial roles in sexual reversal of tongue sole fish. We also offer the first clues on the mechanisms behind gene dosage balancing in an organism that undergoes sexual reversal. Finally, we suggest a causal link between the bias sex chromosome assortment in the offspring of a pseudomale family and the transgenerational epigenetic inheritance of sexual reversal in tongue sole fish
Heavy carrier effective masses in the van der Waals semiconductor Sn(SeS) revealed by high magnetic fields up to 150 T
The SnSe 2(1âx) S2x alloy is a van der Waals semiconductor with versatile, tunable electronic properties and prospects for future applications ranging from electronics to thermoelectrics and supercon-ductivity. Its band structure and carrier effective masses underlie the quantum behaviour of charge carriers and hold great promise in future technologies. However, experimental measurement of these properties remains a challenging task. Here, magneto-transmission spectroscopy of SnSe 2(1âx) S2x thin films at pulsed magnetic fields B of up to 150 T reveals a large electron-hole reduced cyclotron mass Âľ * > 0.454 me (me is the free electron mass). This finding is supported by first-principle calculations of the band structure and by semiclassical Boltzmann transport theory, which predict a pronounced anisotropy of the carrier effective masses and electrical conductivity over two orthogonal directions (namely in the layer plane and out-of-plane) with a different anisotropy for electrons and holes. These properties are unique and important features of this class of compounds and are critical for understanding and using the tunable band structure of SnSe 2(1âx) S2x in fundamental and applied research
A Survey of Chinese Pig Farms and Human Healthcare Isolates Reveals Separate Human and Animal Methicillin-Resistant Staphylococcus aureus Populations.
There has been increasing concern that the overuse of antibiotics in livestock farming is contributing to the burden of antimicrobial resistance in people. Farmed animals in Europe and North America, particularly pigs, provide a reservoir for livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA ST398 lineage) found in people. This study is designed to investigate the contribution of MRSA from Chinese pig farms to human infection. A collection of 483 MRSA are isolated from 55 farms and 4 hospitals in central China, a high pig farming density area. CC9 MRSA accounts for 97.2% of all farm isolates, but is not present in hospital isolates. ST398 isolates are found on farms and hospitals, but none of them formed part of the "LA-MRSA ST398 lineage" present in Europe and North America. The hospital ST398 MRSA isolate form a clade that is clearly separate from the farm ST398 isolates. Despite the presence of high levels of MRSA found on Chinese pig farms, the authors find no evidence of them spilling over to the human population. Nevertheless, the ST398 MRSA obtained from hospitals appear to be part of a widely distributed lineage in China. The new animal-adapted ST398 lineage that has emerged in China is of concern
Water Footprint and Water Pinch Analysis in Ethanol Industrial Production for Water Management
Fuel ethanol is considered to be a clean alternative fuel to meet increasing energy demands and mitigate environmental pollution. Faced with challenges in terms of energy security and environmental pollution, China is vigorously developing fuel ethanol. However, ethanol-manufacturing is a water-intensive industry; it consumes large volumes of fresh water and generates a corresponding amount of waste water. Expansion of this industry can reduce water quality and cause water stress. This study aims to combine the water footprint (WF) with a water pinch analysis technique to manage water consumption and sewage discharge systematically in an ethanol plant. A well-operated cassava ethanol plant in China was chosen as a case study. The WF of industrial ethanol production was evaluated. The total WF was 17.08 L/L ethanol, comprised of a 7.69 L blue water footprint (BWF), and a 9.39 L gray water footprint (GWF). The direct WF was 16.38 L/L ethanol, and the indirect WF was 0.70 L/L ethanol. Thereafter, a water pinch analysis was conducted, and the optimal direct water reuse scheme was studied. After the water network was optimized, the BWF was reduced by 0.98 L/L ethanol, while the GWF was reduced by 1.47 L/L ethanol. These results indicate that the combined use of WF and pinch analysis can provide the starch-based ethanol industry with an effective tool to improve its water management
Efficiency Comparison of Public Hospitals under Different Administrative Affiliations in China: A Pilot City Case
This study seeks to measure the efficiency disparity and productivity change of tertiary general public hospitals in Wuhan city, central China from the perspective of administrative affiliations by using panel data from 2013 to 2017. Sample hospitals were divided into three categories, namely provincial hospitals, municipal hospitals, and other levels of hospitals. Data envelopment analysis with bootstrapping technique was used to estimate efficiency scores, and a sensitive analysis was performed by varying the specification of model by considering undesirable outputs to test robustness of estimation, and efficiency evolution analysis was carried out by using the Malmquist index. The results indicated that the average values of provincial hospitals and municipal hospitals have experienced efficiency improvement over the period, especially after the initiation of Pilot Public Hospital Reform, but hospitals under other affiliations showed an opposite trend. Meanwhile, differences of administrative subordination in technical efficiency of public hospitals emerged, and the disparity was likely to grow over time. The higher efficiency of hospitals affiliated with municipality, as compared with those governed by province and under other administrative affiliations, may be attributed to better governance and organization structure
- âŚ