1 research outputs found

    Graphene Oxide–Peptide Nanocomplex as a Versatile Fluorescence Probe of Protein Kinase Activity Based on Phosphorylation Protection against Carboxypeptidase Digestion

    No full text
    The research on complicated kinomics and kinase-target drug discovery requires the development of simple, cost-effective, and multiplex kinase assays. Herein, we propose a novel and versatile biosensing platform for the detection of protein kinase activity based on graphene oxide (GO)–peptide nanocomplex and phosphorylation-induced suppression of carboxypeptidase Y (CPY) cleavage. Kinase-catalyzed phosphorylation protects the fluorophore-labeled peptide probe against CPY digestion and induces the formation of a GO/peptide nanocomplex resulting in fluorescence quenching, while the nonphosphopeptide is degraded by CPY to release free fluorophore as well as restore fluorescence. This GO-based nanosensor has been successfully applied to sensitively detect two model kinases, casein kinase (CKII) and cAMP–dependent protein kinase (PKA) with low detection limits of 0.0833 mU/μL and 0.134 mU/μL, respectively. The feasibility of this GO-based sensor was further demonstrated by the assessment of kinase inhibition by staurosporine and H-89, in vitro kinase assay in cell lysates, and simultaneous detection of CKII and PKA activity. Moreover, the GO-based fluorescence anisotropy (FA) kinase assay has been also developed using GO as a FA signal amplifier. The proposed sensor is homogeneous, facile, universal, label-free, and applicable for multiplexed kinase assay, presenting a promising method for kinase-related biochemical fundamental research and inhibitor screening
    corecore