334 research outputs found

    The effect of electronic entropy on temperature peculiarities of the frequency characteristics of two interacting anharmonic vibrational modes in β−\beta-Zr

    Full text link
    A 2D temperature-dependent effective potential is calculated for the interacting longitudinal and transverse L−L-phonons of β\beta zirconium in the frozen-phonon model. The effective potentials obtained for different temperatures are used for the numerical solution of a set of stochastic differential equations with a thermostat of the white-noise type. Analysis of the spectral density of transverse vibrations allows one to determine the temperature at which β\beta-Zr becomes unstable with respect to the longitudinal L−L-vibrations. The obtained temperature value practically coincides with the experimental temperature of the β→α\beta \to \alpha structural transition in zirconium. The role of electronic entropy in the β−\beta-Zr stability is discussed.Comment: 9 pages, 10 figures (submitted in Phys.Rev.

    The Localization Length of Stationary States in the Nonlinear Schreodinger Equation

    Full text link
    For the nonlinear Schreodinger equation (NLSE), in presence of disorder, exponentially localized stationary states are found. In the present Letter it is demonstrated analytically that the localization length is typically independent of the strength of the nonlinearity and is identical to the one found for the corresponding linear equation. The analysis makes use of the correspondence between the stationary NLSE and the Langevin equation as well as of the resulting Fokker-Planck equation. The calculations are performed for the ``white noise'' random potential and an exact expression for the exponential growth of the eigenstates is obtained analytically. It is argued that the main conclusions are robust

    Instability of Magnons in Two-dimensional Antiferromagnet at High Magnetic Fields

    Full text link
    Spin dynamics of the square lattice Heisenberg antiferromagnet, \BaMnGeO, is studied by a combination of bulk measurements, neutron diffraction, and inelastic neutron scattering techniques. Easy plane type antiferromagnetic order is identified at T≤4.0T \le 4.0 K. The exchange interactions are estimated as J1J_1 = 27.8(3)μ{\mu}eV and J2J_2 = 1.0(1) μ{\mu}eV, and the saturation field HCH_{\rm C} is 9.75 T. Magnetic excitation measurements with high experimental resolution setup by triple axis neutron spectrometer reveals the instability of one magnon excitation in the field range of 0.7HC≲H≲0.85HC0.7H_{\rm C} \lesssim H \lesssim 0.85H_{\rm C}.Comment: 5 pgase, 5 figuers, to be published in PRB R

    Energy and entropy of relativistic diffusing particles

    Full text link
    We discuss energy-momentum tensor and the second law of thermodynamics for a system of relativistic diffusing particles. We calculate the energy and entropy flow in this system. We obtain an exact time dependence of energy, entropy and free energy of a beam of photons in a reservoir of a fixed temperature.Comment: 14 pages,some formulas correcte

    Multifractals Competing with Solitons on Fibonacci Optical Lattice

    Full text link
    We study the stationary states for the nonlinear Schr\"odinger equation on the Fibonacci lattice which is expected to be realized by Bose-Einstein condensates loaded into an optical lattice. When the model does not have a nonlinear term, the wavefunctions and the spectrum are known to show fractal structures. Such wavefunctions are called critical. We present a phase diagram of the energy spectrum for varying the nonlinearity. It consists of three portions, a forbidden region, the spectrum of critical states, and the spectrum of stationary solitons. We show that the energy spectrum of critical states remains intact irrespective of the nonlinearity in the sea of a large number of stationary solitons.Comment: 5 pages, 4 figures, major revision, references adde

    Lyapunov exponents in 1d disordered system with long-range memory

    Full text link
    The Lyapunov exponents for Anderson localization are studied in a one dimensional disordered system. A random Gaussian potential with the power law decay ∼1/∣x∣q\sim 1/|x|^q of the correlation function is considered. The exponential growth of the moments of the eigenfunctions and their derivative is obtained. Positive Lyapunov exponents, which determine the asymptotic growth rate are found

    Quantum Statistical Effects on Fusion Dynamics of Heavy-Ions

    Get PDF
    In order to describe the fusion of two very heavy nuclei at near barrier energies, a generalized Langevin approach is proposed, which incorporates the quantum statistical fluctuations in accordance with the fluctuation and dissipation theorem. It is illustrated that the quantum statistical effects introduce an enhancement of the formation of compound nucleus, though the quantum enhancement is somewhat less pronounced as indicated in the previous calculations.Comment: 17 pages, 6 figure

    Subgap tunneling through channels of polarons and bipolarons in chain conductors

    Full text link
    We suggest a theory of internal coherent tunneling in the pseudogap region where the applied voltage is below the free electron gap. We consider quasi 1D systems where the gap is originated by a lattice dimerization like in polyacethylene, as well as low symmetry 1D semiconductors. Results may be applied to several types of conjugated polymers, to semiconducting nanotubes and to quantum wires of semiconductors. The approach may be generalized to tunneling in strongly correlated systems showing the pseudogap effect, like the family of High Tc materials in the undoped limit. We demonstrate the evolution of tunneling current-voltage characteristics from smearing the free electron gap down to threshold for tunneling of polarons and further down to the region of bi-electronic tunneling via bipolarons or kink pairs.Comment: 14 pages, 8 postscript figure

    Spontaneous symmetry breaking for long-wave gravitons in the early Universe

    Full text link
    It is shown that nonlinear terms in equations of gravitons on the background of curved space-time of the expanding Universe can solve the problem of the negative square of the effective mass formally arising in linear approximation for gravitons. Similar to well known spontaneous breaking of symmetry in Goldstone model one must take another vacuum so that nonzero vacuum expectation value of the quantized graviton field leads to change of spectrum for gravitons. There appears two graviton fields, one with the positive mass, another with the zero mass. Energy density and the density of particles created by gravitation of the expanding Universe are calculated for some special cases of the scale factor. Numerical results are obtained for the dust universe case.Comment: 13 page

    Absence of mobility edge for the Anderson random potential on tree graphs at weak disorder

    Full text link
    Our recently established criterion for the formation of extended states on tree graphs in the presence of disorder is shown to have the surprising implication that for bounded random potentials, as in the Anderson model, there is no transition to a spectral regime of Anderson localization, in the form usually envisioned, unless the disorder is strong enough
    • …
    corecore