6 research outputs found

    EndoNet: an information resource about endocrine networks

    Get PDF
    EndoNet is a new database that provides information about the components of endocrine networks and their relations. It focuses on the endocrine cell-to-cell communication and enables the analysis of intercellular regulatory pathways in humans. In the EndoNet data model, two classes of components span a bipartite directed graph. One class represents the hormones (in the broadest sense) secreted by defined donor cells. The other class consists of the acceptor or target cells expressing the corresponding hormone receptors. The identity and anatomical environment of cell types, tissues and organs is defined through references to the CYTOMER(®) ontology. With the EndoNet user interface, it is possible to query the database for hormones, receptors or tissues and to combine several items from different search rounds in one complex result set, from which a network can be reconstructed and visualized. For each entity, a detailed characteristics page is available. Some well-established endocrine pathways are offered as showcases in the form of predefined result sets. These sets can be used as a starting point for a more complex query or for obtaining a quick overview. The EndoNet database is accessible at

    S/MARt DB: a database on scaffold/matrix attached regions

    Get PDF
    S/MARt DB, the S/MAR transaction database, is a relational database covering scaffold/matrix attached regions (S/MARs) and nuclear matrix proteins that are involved in the chromosomal attachment to the nuclear scaffold. The data are mainly extracted from original publications, but a World Wide Web interface for direct submissions is also available. S/MARt DB is closely linked to the TRANSFAC database on transcription factors and their binding sites. It is freely accessible through the World Wide Web (http://transfac.gbf.de/SMARtDB/) for non-profit research

    In Silico Prediction of Scaffold/Matrix Attachment Regions in Large Genomic Sequences

    Get PDF
    Scaffold/matrix attachment regions (S/MARs) are essential regulatory DNA elements of eukaryotic cells. They are major determinants of locus control of gene expression and can shield gene expression from position effects. Experimental detection of S/MARs requires substantial effort and is not suitable for large-scale screening of genomic sequences. In silico prediction of S/MARs can provide a crucial first selection step to reduce the number of candidates. We used experimentally defined S/MAR sequences as the training set and generated a library of new S/MAR-associated, AT-rich patterns described as weight matrices. A new tool called SMARTest was developed that identifies potential S/MARs by performing a density analysis based on the S/MAR matrix library (http://www.genomatix.de/cgi-bin/smartest_pd/smartest.pl). S/MAR predictions were evaluated by using six genomic sequences from animal and plant for which S/MARs and non-S/MARs were experimentally mapped. SMARTest reached a sensitivity of 38% and a specificity of 68%. In contrast to previous algorithms, the SMARTest approach does not depend on the sequence context and is suitable to analyze long genomic sequences up to the size of whole chromosomes. To demonstrate the feasibility of large-scale S/MAR prediction, we analyzed the recently published chromosome 22 sequence and found 1198 S/MAR candidates

    Type I IFN and not TNF, is Essential for Cyclic Di-nucleotide-elicited CTL by a Cytosolic Cross-presentation Pathway.

    Get PDF
    Cyclic di-nucleotides (CDN) are potent stimulators of innate and adaptive immune responses. Cyclic di-AMP (CDA) is a promising adjuvant that generates humoral and cellular immunity. The strong STING-dependent stimulation of type I IFN represents a key feature of CDA. However, recent studies suggested that this is dispensable for adjuvanticity. Here we demonstrate that stimulation of IFN-γ-secreting CD8(+) cytotoxic T lymphocytes (CTL) is significantly decreased after vaccination in the absence of type I IFN signaling. The biological significance of this CTL response was confirmed by the stimulation of MHC class I-restricted protection against influenza virus challenge. We show here that type I IFN (and not TNF-α) is essential for CDA-mediated cross-presentation by a cathepsin independent, TAP and proteosome dependent cytosolic antigen processing pathway, which promotes effective cross-priming and further CTL induction. Our data clearly demonstrate that type I IFN signaling is critical for CDN-mediated cross-presentation
    corecore