4,782 research outputs found

    Higgs production at future e+e−e^+e^- colliders in the Georgi-Machacek model

    Full text link
    We study how the dominant single and double SM-like Higgs (hh) production at future e+e−e^+e^- colliders is modified in the Georgi-Machacek (GM) model. On imposing theoretical, indirect and direct constraints, significant deviations of hh-couplings from their SM values are still possible; for instance, the Higgs-gauge coupling coupling can be corrected by a factor κhVV∈[0.93,1.15]\kappa_{hVV}\in[0.93,1.15] in the allowed parameter space. For the Higgs-strahlung e+e−→hZe^+e^-\to hZ and vector boson fusion processes e+e−→hννˉ, he+e−e^+e^-\to h\nu\bar{\nu},~he^+e^-, the cross section could increase by 32%32\% or decrease by 13%13\%. In the case of associated production with a top quark pair e+e−→httˉe^+e^-\to ht\bar{t}, the cross section can be enhanced up to several times when the custodial triplet scalar H30H_3^0 is resonantly produced. In the meanwhile, the double Higgs production e+e−→hhZ (hhννˉ)e^+e^-\to hhZ~(hh\nu\bar{\nu}) can be maximally enhanced by one order of magnitude at the resonant H1,30H_{1,3}^0 production. We also include exclusion limits expected from future LHC runs at higher energy and luminosity and discuss their further constraints on the relevant model parameters. We find that the GM model can result in likely measurable deviations of Higgs production from the SM at future e+e−e^+e^- colliders.Comment: 31 pages, 17 figures, published in JHE

    A new kernel method for hyperspectral image feature extraction

    Get PDF
    Hyperspectral image provides abundant spectral information for remote discrimination of subtle differences in ground covers. However, the increasing spectral dimensions, as well as the information redundancy, make the analysis and interpretation of hyperspectral images a challenge. Feature extraction is a very important step for hyperspectral image processing. Feature extraction methods aim at reducing the dimension of data, while preserving as much information as possible. Particularly, nonlinear feature extraction methods (e.g. kernel minimum noise fraction (KMNF) transformation) have been reported to benefit many applications of hyperspectral remote sensing, due to their good preservation of high-order structures of the original data. However, conventional KMNF or its extensions have some limitations on noise fraction estimation during the feature extraction, and this leads to poor performances for post-applications. This paper proposes a novel nonlinear feature extraction method for hyperspectral images. Instead of estimating noise fraction by the nearest neighborhood information (within a sliding window), the proposed method explores the use of image segmentation. The approach benefits both noise fraction estimation and information preservation, and enables a significant improvement for classification. Experimental results on two real hyperspectral images demonstrate the efficiency of the proposed method. Compared to conventional KMNF, the improvements of the method on two hyperspectral image classification are 8 and 11%. This nonlinear feature extraction method can be also applied to other disciplines where high-dimensional data analysis is required

    Neural Network Based Models for Efficiency Frontier Analysis: An Application to East Asian Economies' Growth Decomposition

    Get PDF
    There has been a long tradition in business and economics to use frontier analysis to assess a production unit’s performance. The first attempt utilized the data envelopment analysis (DEA) which is based on a piecewise linear and mathematical programming approach, whilst the other employed the parametric approach to estimate the stochastic frontier functions. Both approaches have their advantages as well as limitations. This paper sets out to use an alternative approach, i.e. artificial neural networks (ANNs) for measuring efficiency and productivity growth for seven East Asian economies at manufacturing level, for the period 1963 to 1998, and the relevant comparisons are carried out between DEA and ANN, and stochastic frontier analysis (SFA) and ANN in order to test the ANNs’ ability to assess the performance of production units. The results suggest that ANNs are a promising alternative to traditional approaches, to approximate production functions more accurately and measure efficiency and productivity under non-linear contexts, with minimum assumptions.total factor productivity, neural networks, stochastic frontier analysis, DEA, East Asian economies

    Optimized kernel minimum noise fraction transformation for hyperspectral image classification

    Get PDF
    This paper presents an optimized kernel minimum noise fraction transformation (OKMNF) for feature extraction of hyperspectral imagery. The proposed approach is based on the kernel minimum noise fraction (KMNF) transformation, which is a nonlinear dimensionality reduction method. KMNF can map the original data into a higher dimensional feature space and provide a small number of quality features for classification and some other post processing. Noise estimation is an important component in KMNF. It is often estimated based on a strong relationship between adjacent pixels. However, hyperspectral images have limited spatial resolution and usually have a large number of mixed pixels, which make the spatial information less reliable for noise estimation. It is the main reason that KMNF generally shows unstable performance in feature extraction for classification. To overcome this problem, this paper exploits the use of a more accurate noise estimation method to improve KMNF. We propose two new noise estimation methods accurately. Moreover, we also propose a framework to improve noise estimation, where both spectral and spatial de-correlation are exploited. Experimental results, conducted using a variety of hyperspectral images, indicate that the proposed OKMNF is superior to some other related dimensionality reduction methods in most cases. Compared to the conventional KMNF, the proposed OKMNF benefits significant improvements in overall classification accuracy
    • …
    corecore