6 research outputs found

    Switchable Catalytic DNA Catenanes

    No full text
    Two-ring interlocked DNA catenanes are synthesized and characterized. The supramolecular catenanes show switchable cyclic catalytic properties. In one system, the catenane structure is switched between a hemin/G-quadruplex catalytic structure and a catalytically inactive state. In the second catenane structure the catenane is switched between a catalytically active Mg<sup>2+</sup>-dependent DNAzyme-containing catenane and an inactive catenane state. In the third system, the interlocked catenane structure is switched between two distinct catalytic structures that include the Mg<sup>2+</sup>- and the Zn<sup>2+</sup>-dependent DNAzymes

    Dual Switchable CRET-Induced Luminescence of CdSe/ZnS Quantum Dots (QDs) by the Hemin/G-Quadruplex-Bridged Aggregation and Deaggregation of Two-Sized QDs

    No full text
    The hemin/G-quadruplex-catalyzed generation of chemiluminescence through the oxidation of luminol by H<sub>2</sub>O<sub>2</sub> stimulates the chemiluminescence resonance energy transfer (CRET) to CdSe/ZnS quantum dots (QDs), resulting in the luminescence of the QDs. By the cyclic K<sup>+</sup>-ion-induced formation of the hemin/G-quadruplex linked to the QDs, and the separation of the G-quadruplex in the presence of 18-crown-6-ether, the ON-OFF switchable CRET-induced luminescence of the QDs is demonstrated. QDs were modified with nucleic acids consisting of the G-quadruplex subunits sequences and of programmed domains that can be cross-linked through hybridization, using an auxiliary scaffold. In the presence of K<sup>+</sup>-ions, the QDs aggregate through the cooperative stabilization of K<sup>+</sup>-ion-stabilized G-quadruplex bridges and duplex domains between the auxiliary scaffold and the nucleic acids associated with the QDs. In the presence of 18-crown-6-ether, the K<sup>+</sup>-ions are eliminated from the G-quadruplex units, leading to the separation of the aggregated QDs. By the cyclic treatment of the QDs with K<sup>+</sup>-ions/18-crown-6-ether, the reversible aggregation/deaggregation of the QDs is demonstrated. The incorporation of hemin into the K<sup>+</sup>-ion-stabilized G-quadruplex leads to the ON-OFF switchable CRET-stimulated luminescence of the QDs. By the mixing of appropriately modified two-sized QDs, emitting at 540 and 610 nm, the dual ON-OFF activation of the luminescence of the QDs is demonstrated

    Topoisomerase-Based Preparation and AFM Imaging of Multi-Interlocked Circular DNA

    No full text
    Multi-interlocked circular DNA structures have been in high demand for fabricating complicated functional DNA architectures and nanodevices such as molecular switches, shuttles, and motors. Even though various innovative methods have been developed in the past, creation of multi-interlocked circular DNA structures with defined numbers of DNA molecules and linking patterns is still a challenging task nowadays. Here, we propose a top-down decatenation of kinetoplast DNA as a new approach for creating multi-interlocked circular DNA structures. Through optimizing the amount and reaction time of topoisomerase II, we synthesized completely mutually interlocked tricircular, tetra-circular, and oligo-circular DNA structures, which have not yet been acquirable through any other existing synthetic means. The catenation structures of multiple circular DNA were further verified through atomic force microscopic analysis of the backbone overlapping patterns and the circumference. It accordingly is our expectation that the top-down enzymatic approaches could offer a highly interlocked network with defined numbers of circular DNA with simple protocols, and could consequently be beneficial to the design and fabrication of sophisticated functional molecules and nanodevices in the areas of supramolecular chemistry, DNA nanotechnology, and material science

    Accelerating the Peroxidase-Like Activity of Gold Nanoclusters at Neutral pH for Colorimetric Detection of Heparin and Heparinase Activity

    No full text
    The peroxidase-like catalytic activity of gold nanoclusters (Au-NCs) is quite low around physiological pH, which greatly limits their biological applications. Herein, we found heparin can greatly accelerate the peroxidase-like activity of Au-NCs at neutral pH. The catalytic activity of Au-NCs toward the peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation by H<sub>2</sub>O<sub>2</sub> was 25-fold increased in the presence of heparin at pH 7. The addition of heparin not only accelerated the initial catalytic rate of Au-NCs but also prevented the Au-NCs from catalyst deactivation. This allows the sensitive colorimetric detection of heparin at neutral pH. In the presence of heparinase, heparin was hydrolyzed into small fragments, weakening the enhancement effect of catalytic activity. On the basis of this phenomenon, the colorimetric determination of heparinase in the range from 0.1 to 3 μg·mL<sup>–1</sup> was developed with a detection limit of 0.06 μg·mL<sup>–1</sup>. Finally, the detection of heparin and heparinase activity in diluted serum samples was also demonstrated

    Accelerating the Phosphatase-like Activity of Uio-66-NH<sub>2</sub> by Catalytically Inactive Metal Ions and Its Application for Improved Fluorescence Detection of Cardiac Troponin I

    No full text
    Compared with natural enzymes, nanozymes usually exhibit much lower catalytic activities, which limit the sensitivities of nanozyme-based immunoassays. Herein, several metal ions without enzyme-like activities were engineered onto Uio-66-NH2 nanozyme through postsynthetic modification. The obtained Mn+@Uio-66-NH2 (Mn+ = Zn2+, Cd2+, Co2+, Ca2+and Ni2+) exhibited improved phosphatase-like catalytic activities. In particular, a 12-fold increase in the catalytic efficiency (kcat/Km) of Uio-66-NH2 was observed after the modification with Zn2+. Mechanism investigations indicate that both the amino groups and oxygen-containing functional groups in Uio-66-NH2 are the binding sites of Zn2+, and the modified Zn2+ ions on Uio-66-NH2 serve as the additional catalytic sites for improving the catalytic performance. Furthermore, the highly active Zn2+@Uio-66-NH2 was used as a nanozyme label to develop a fluorescence immunoassay method for the detection of cardiac troponin I (cTnI). Compared with pristine Uio-66-NH2, Zn2+@Uio-66-NH2 can widen the linear range by 1 order of magnitude (from 10 pg/mL–1 μg/mL to 1 pg/mL–1 μg/mL) and also lower the detection limit by 5 times (from 4.7 pg/mL to 0.9 pg/mL)

    “Light-on” Sensing of Antioxidants Using Gold Nanoclusters

    No full text
    Depletion of intracellular antioxidants is linked to major cytotoxic events and cellular disorders, such as oxidative stress and multiple sclerosis. In addition to medical diagnosis, determining the concentration of antioxidants in foodstuffs, food preservatives, and cosmetics has proved to be very vital. Gold nanoclusters (Au-NCs) have a core size below 2 nm and contain several metal atoms. They have interesting photophysical properties, are readily functionalized, and are safe to use in various biomedical applications. Herein, a simple and quantitative spectroscopic method based on Au-NCs is developed to detect and image antioxidants such as ascorbic acid. The sensing mechanism is based on the fact that antioxidants can protect the fluorescence of Au-NCs against quenching by highly reactive oxygen species. Our method shows great accuracy when employed to detect the total antioxidant capacity in commercial fruit juice. Moreover, confocal fluorescence microscopy images of HeLa cells show that this approach can be successfully used to image antioxidant levels in living cells. Finally, the potential application of this “light-on” detection method in multiple logic gate fabrication was discussed using the fluorescence intensity of Au-NCs as output
    corecore