2,167 research outputs found

    Revisiting the interacting model of new agegraphic dark energy

    Full text link
    In this paper, a new version of the interacting model of new agegraphic dark energy (INADE) is proposed and analyzed in detail. The interaction between dark energy and dark matter is reconsidered. The interaction term Q=bH0ρdeαρdm1αQ=bH_0\rho_{\rm de}^\alpha\rho_{\rm dm}^{1-\alpha} is adopted, which abandons the Hubble expansion rate HH and involves both ρde\rho_{\rm de} and ρdm\rho_{\rm dm}. Moreover, the new initial condition for the agegraphic dark energy is used, which solves the problem of accommodating baryon matter and radiation in the model. The solution of the model can be given using an iterative algorithm. A concrete example for the calculation of the model is given. Furthermore, the model is constrained by using the combined Planck data (Planck+BAO+SNIa+H0H_0) and the combined WMAP-9 data (WMAP+BAO+SNIa+H0H_0). Three typical cases are considered: (A) Q=bH0ρdeQ=bH_0\rho_{\rm de}, (B) Q=bH0ρdeρdmQ=bH_0\sqrt{\rho_{\rm de}\rho_{\rm dm}}, and (C) Q=bH0ρdmQ=bH_0\rho_{\rm dm}, which correspond to α=1\alpha=1, 1/2, and 0, respectively. The departures of the models from the Λ\LambdaCDM model are measured by the Δ\DeltaBIC and Δ\DeltaAIC values. It is shown that the INADE model is better than the NADE model in the fit, and the INADE(A) model is the best in fitting data among the three cases.Comment: 6 pages, 2 figure

    Robust federated learning with noisy communication

    Get PDF
    Federated learning is a communication-efficient training process that alternate between local training at the edge devices and averaging of the updated local model at the center server. Nevertheless, it is impractical to achieve perfect acquisition of the local models in wireless communication due to the noise, which also brings serious effect on federated learning. To tackle this challenge in this paper, we propose a robust design for federated learning to decline the effect of noise. Considering the noise in two aforementioned steps, we first formulate the training problem as a parallel optimization for each node under the expectation-based model and worst-case model. Due to the non-convexity of the problem, regularizer approximation method is proposed to make it tractable. Regarding the worst-case model, we utilize the sampling-based successive convex approximation algorithm to develop a feasible training scheme to tackle the unavailable maxima or minima noise condition and the non-convex issue of the objective function. Furthermore, the convergence rates of both new designs are analyzed from a theoretical point of view. Finally, the improvement of prediction accuracy and the reduction of loss function value are demonstrated via simulation for the proposed designs

    Iterative Geometry-Aware Cross Guidance Network for Stereo Image Inpainting

    Full text link
    Currently, single image inpainting has achieved promising results based on deep convolutional neural networks. However, inpainting on stereo images with missing regions has not been explored thoroughly, which is also a significant but different problem. One crucial requirement for stereo image inpainting is stereo consistency. To achieve it, we propose an Iterative Geometry-Aware Cross Guidance Network (IGGNet). The IGGNet contains two key ingredients, i.e., a Geometry-Aware Attention (GAA) module and an Iterative Cross Guidance (ICG) strategy. The GAA module relies on the epipolar geometry cues and learns the geometry-aware guidance from one view to another, which is beneficial to make the corresponding regions in two views consistent. However, learning guidance from co-existing missing regions is challenging. To address this issue, the ICG strategy is proposed, which can alternately narrow down the missing regions of the two views in an iterative manner. Experimental results demonstrate that our proposed network outperforms the latest stereo image inpainting model and state-of-the-art single image inpainting models.Comment: Accepted by IJCAI 202

    Closed-Loop Magnetic Manipulation for Robotic Transesophageal Echocardiography

    Full text link
    This paper presents a closed-loop magnetic manipulation framework for robotic transesophageal echocardiography (TEE) acquisitions. Different from previous work on intracorporeal robotic ultrasound acquisitions that focus on continuum robot control, we first investigate the use of magnetic control methods for more direct, intuitive, and accurate manipulation of the distal tip of the probe. We modify a standard TEE probe by attaching a permanent magnet and an inertial measurement unit sensor to the probe tip and replacing the flexible gastroscope with a soft tether containing only wires for transmitting ultrasound signals, and show that 6-DOF localization and 5-DOF closed-loop control of the probe can be achieved with an external permanent magnet based on the fusion of internal inertial measurement and external magnetic field sensing data. The proposed method does not require complex structures or motions of the actuator and the probe compared with existing magnetic manipulation methods. We have conducted extensive experiments to validate the effectiveness of the framework in terms of localization accuracy, update rate, workspace size, and tracking accuracy. In addition, our results obtained on a realistic cardiac tissue-mimicking phantom show that the proposed framework is applicable in real conditions and can generally meet the requirements for tele-operated TEE acquisitions.Comment: Accepted by IEEE Transactions on Robotics. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Near-Field Positioning and Attitude Sensing Based on Electromagnetic Propagation Modeling

    Full text link
    Positioning and sensing over wireless networks are imperative for many emerging applications. However, traditional wireless channel models cannot be used for sensing the attitude of the user equipment (UE), since they over-simplify the UE as a point target. In this paper, a comprehensive electromagnetic propagation modeling (EPM) based on electromagnetic theory is developed to precisely model the near-field channel. For the noise-free case, the EPM model establishes the non-linear functional dependence of observed signals on both the position and attitude of the UE. To address the difficulty in the non-linear coupling, we first propose to divide the distance domain into three regions, separated by the defined Phase ambiguity distance and Spacing constraint distance. Then, for each region, we obtain the closed-form solutions for joint position and attitude estimation with low complexity. Next, to investigate the impact of random noise on the joint estimation performance, the Ziv-Zakai bound (ZZB) is derived to yield useful insights. The expected Cram\'er-Rao bound (ECRB) is further provided to obtain the simplified closed-form expressions for the performance lower bounds. Our numerical results demonstrate that the derived ZZB can provide accurate predictions of the performance of estimators in all signal-to-noise ratio (SNR) regimes. More importantly, we achieve the millimeter-level accuracy in position estimation and attain the 0.1-level accuracy in attitude estimation.Comment: 16 pages, 9 figures. Submitted to JSAC - Special Issue on Positioning and Sensing Over Wireless Network

    An Effective Way of J Wave Separation Based on Multilayer NMF

    Get PDF
    J wave is getting more and more important in the clinical diagnosis as a new index of the electrocardiogram (ECG) of ventricular bipolar, but its signal often mixed in normal ST segment, using the traditional electrocardiograph, and diagnosed by experience cannot meet the practical requirements. Therefore, a new method of multilayer nonnegative matrix factorization (NMF) in this paper is put forward, taking the hump shape J wave, for example, which can extract the original J wave signal from the ST segment and analyze the accuracy of extraction, showing the characteristics of hump shape J wave from the aspects of frequency domain, power spectrum, and spectral type, providing the basis for clinical diagnosis and increasing the reliability of the diagnosis of J wave

    ROAM: memory-efficient large DNN training via optimized operator ordering and memory layout

    Full text link
    As deep learning models continue to increase in size, the memory requirements for training have surged. While high-level techniques like offloading, recomputation, and compression can alleviate memory pressure, they also introduce overheads. However, a memory-efficient execution plan that includes a reasonable operator execution order and tensor memory layout can significantly increase the models' memory efficiency and reduce overheads from high-level techniques. In this paper, we propose ROAM which operates on computation graph level to derive memory-efficient execution plan with optimized operator order and tensor memory layout for models. We first propose sophisticated theories that carefully consider model structure and training memory load to support optimization for large complex graphs that have not been well supported in the past. An efficient tree-based algorithm is further proposed to search task divisions automatically, along with delivering high performance and effectiveness to solve the problem. Experiments show that ROAM achieves a substantial memory reduction of 35.7%, 13.3%, and 27.2% compared to Pytorch and two state-of-the-art methods and offers a remarkable 53.7x speedup. The evaluation conducted on the expansive GPT2-XL further validates ROAM's scalability

    Regulatory mechanism of ferroptosis, a new mode of cell death

    Get PDF
    Ferroptosis is a newly discovered process of cell death that differs from apoptosis, autophagy, and pyroptosis. It is closely related to tumor formation, diseases that damage tissue, and neurodegenerative diseases. Activation of the extracellular regulated protein kinase (EPK) pathway and acylCOA synthetase long-chain family member 4 (ACSL4) are indicative of ferroptosis. During ferroptosis, the mitochondrial volume becomes smaller and the double membrane density increases. The process of ferroptosis involves disruption of the material redox reaction, and changes in the levels of cystine, glutathione, NADPH, and increase of GPX4, NOX, and ROS. Iron increases significantly in ferroptosis. Divalent iron ions can greatly promote lipid oxidation, ROS accumulation, and thus promote ferroptosis. The occurrence and progress of ferroptosis are influenced by multiple factors and signaling pathways.Keywords: Ferroptosis, Iron; Lipid, Active oxygen, Inhibitor, Induce
    corecore