89 research outputs found

    Two-Factor Authentication Approach Based on Behavior Patterns for Defeating Puppet Attacks

    Full text link
    Fingerprint traits are widely recognized for their unique qualities and security benefits. Despite their extensive use, fingerprint features can be vulnerable to puppet attacks, where attackers manipulate a reluctant but genuine user into completing the authentication process. Defending against such attacks is challenging due to the coexistence of a legitimate identity and an illegitimate intent. In this paper, we propose PUPGUARD, a solution designed to guard against puppet attacks. This method is based on user behavioral patterns, specifically, the user needs to press the capture device twice successively with different fingers during the authentication process. PUPGUARD leverages both the image features of fingerprints and the timing characteristics of the pressing intervals to establish two-factor authentication. More specifically, after extracting image features and timing characteristics, and performing feature selection on the image features, PUPGUARD fuses these two features into a one-dimensional feature vector, and feeds it into a one-class classifier to obtain the classification result. This two-factor authentication method emphasizes dynamic behavioral patterns during the authentication process, thereby enhancing security against puppet attacks. To assess PUPGUARD's effectiveness, we conducted experiments on datasets collected from 31 subjects, including image features and timing characteristics. Our experimental results demonstrate that PUPGUARD achieves an impressive accuracy rate of 97.87% and a remarkably low false positive rate (FPR) of 1.89%. Furthermore, we conducted comparative experiments to validate the superiority of combining image features and timing characteristics within PUPGUARD for enhancing resistance against puppet attacks

    Incorporating Recurrent Reinforcement Learning into Model Predictive Control for Adaptive Control in Autonomous Driving

    Full text link
    Model Predictive Control (MPC) is attracting tremendous attention in the autonomous driving task as a powerful control technique. The success of an MPC controller strongly depends on an accurate internal dynamics model. However, the static parameters, usually learned by system identification, often fail to adapt to both internal and external perturbations in real-world scenarios. In this paper, we firstly (1) reformulate the problem as a Partially Observed Markov Decision Process (POMDP) that absorbs the uncertainties into observations and maintains Markov property into hidden states; and (2) learn a recurrent policy continually adapting the parameters of the dynamics model via Recurrent Reinforcement Learning (RRL) for optimal and adaptive control; and (3) finally evaluate the proposed algorithm (referred as MPC-RRL\textit{MPC-RRL}) in CARLA simulator and leading to robust behaviours under a wide range of perturbations

    Enabling Deep Learning-based Physical-layer Secret Key Generation for FDD-OFDM Systems in Multi-Environments

    Full text link
    Deep learning-based physical-layer secret key generation (PKG) has been used to overcome the imperfect uplink/downlink channel reciprocity in frequency division duplexing (FDD) orthogonal frequency division multiplexing (OFDM) systems. However, existing efforts have focused on key generation for users in a specific environment where the training samples and test samples obey the same distribution, which is unrealistic for real world applications. This paper formulates the PKG problem in multiple environments as a learning-based problem by learning the knowledge such as data and models from known environments to generate keys quickly and efficiently in multiple new environments. Specifically, we propose deep transfer learning (DTL) and meta-learning-based channel feature mapping algorithms for key generation. The two algorithms use different training methods to pre-train the model in the known environments, and then quickly adapt and deploy the model to new environments. Simulation results show that compared with the methods without adaptation, the DTL and meta-learning algorithms both can improve the performance of generated keys. In addition, the complexity analysis shows that the meta-learning algorithm can achieve better performance than the DTL algorithm with less time, lower CPU and GPU resources

    Reconfigurable Intelligent Surface-Assisted Secret Key Generation in Spatially Correlated Channels

    Full text link
    Reconfigurable intelligent surface (RIS) is a disruptive technology to enhance the performance of physical-layer key generation (PKG) thanks to its ability to smartly customize the radio environments. Existing RIS-assisted PKG methods are mainly based on the idealistic assumption of an independent and identically distributed (i.i.d.) channel model at both the base station (BS) and the RIS. However, the i.i.d. model is inaccurate for a typical RIS in an isotropic scattering environment and neglecting the existence of channel spatial correlation would possibly degrade the PKG performance. In this paper, we establish a general spatially correlated channel model and propose a new channel probing framework based on the transmit and the reflective beamforming. We derive a closed-form key generation rate (KGR) expression and formulate an optimization problem, which is solved by using the low-complexity Block Successive Upper-bound Minimization (BSUM) with Mirror-Prox method. Simulation results show that compared to the existing methods based on the i.i.d. fading model, our proposed method achieves about 55 dB transmit power gain when the spacing between two neighboring RIS elements is a quarter of the wavelength. Also, the KGR increases significantly with the number of RIS elements while that increases marginally with the number of BS antennas.Comment: arXiv admin note: text overlap with arXiv:2207.1175

    Key Generation Based on Large Scale Fading

    Get PDF

    Constructing Reciprocal Channel Coefficients for Secret Key Generation in FDD Systems

    Get PDF

    LATITUDE: Robotic Global Localization with Truncated Dynamic Low-pass Filter in City-scale NeRF

    Full text link
    Neural Radiance Fields (NeRFs) have made great success in representing complex 3D scenes with high-resolution details and efficient memory. Nevertheless, current NeRF-based pose estimators have no initial pose prediction and are prone to local optima during optimization. In this paper, we present LATITUDE: Global Localization with Truncated Dynamic Low-pass Filter, which introduces a two-stage localization mechanism in city-scale NeRF. In place recognition stage, we train a regressor through images generated from trained NeRFs, which provides an initial value for global localization. In pose optimization stage, we minimize the residual between the observed image and rendered image by directly optimizing the pose on tangent plane. To avoid convergence to local optimum, we introduce a Truncated Dynamic Low-pass Filter (TDLF) for coarse-to-fine pose registration. We evaluate our method on both synthetic and real-world data and show its potential applications for high-precision navigation in large-scale city scenes. Codes and data will be publicly available at https://github.com/jike5/LATITUDE.Comment: 7 pages, 6 figures, submitted to ICRA 202
    corecore